Вход

Цифровые технологии в современной рентгеновской медицинской диагностики

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 331897
Дата создания 08 июля 2013
Страниц 21
Мы сможем обработать ваш заказ (!) 18 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
910руб.
КУПИТЬ

Содержание

Введение
Понятие рентгеновского излучения
Применение цифровых технологий в современной рентгеновской медицинской диагностики
Заключение
Список литературы

Введение

Цифровые технологии в современной рентгеновской медицинской диагностики

Фрагмент работы для ознакомления

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют в дозиметрии для количественной оценки действия этого вида излучения.
Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).
Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгеновское излучение, возникшее в аноде рентгеновской трубки, направляют на больного, в теле которого оно частично поглощается и рассеивается, а частично проходит насквозь. Датчик преобразователя изображения улавливает прошедшееизлучение, а преобразователь строит видимый световой образ, который воспринимает врач.
Типичная рентгеновская диагностическая система состоит из рентгеновского излучателя (трубки), объекта исследования (пациента), преобразователя изображения и врача-рентгенолога.
Для диагностики используют фотоны с энергией порядка 60—120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально X3), в чем проявляется большая проникающая способность жесткого излучения и пропорционально третьей степени атомного номера вещества-поглотителя. Поглощение рентгеновских лучей почти не зависит от того, в каком соединении атом представлен в веществе, поэтому можно легко сравнить массовые коэффициенты ослабления кости, мягкой ткани или воды. Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.
Современная рентгенодиагностическая установка представляет собой сложное техническое устройство. Оно насыщено элементами телеавтоматики, электроники, электронно-вычислительной техники. Многоступенчатая система защиты обеспечивает радиационную и электрическую безопасность персонала и больных.
Рентгенодиагностические аппараты принято делить на универсальные, позволяющие производить рентгеновское просвечивание и рентгеновские снимки всех частей тела, и аппараты специального назначения. Последние предназначены для выполнения рентгенологических исследований в неврологии, челюстно-лицевой хирургии и стоматологии, маммологии, урологии, ангиологии. Созданы также специальные аппараты для исследования детей, для массовых проверочных исследований (флюорографы), для исследований в операционных. Для рентгеноскопии и рентгенографии больных в палатах и реанимационном отделении применяют передвижные рентгеновские установки.
В состав типового рентгенодиагностического аппарата входят питающее устройство, пульт управления, штатив и рентгеновская трубка. Она-то, собственно, и является источником излучения. Установка получает питание из сети в виде переменного тока низкого напряжения. В высоковольтном трансформаторе сетевой ток преобразуется в переменный ток высокого напряжения. Чем сильнее поглощает исследуемый орган излучение, тем интенсивнее тень, которую он отбрасывает на рентгеновский флюоресцентный экран. И, наоборот, чем больше лучей пройдет через орган, тем слабее его тень на экране.
Для того чтобы получить дифференцированное изображение тканей, примерно одинаково поглощающих излучение, применяют искусственное контрастирование. С этой целью в организм вводят вещества, которые поглощают рентгеновское излучение сильнее или, наоборот, слабее, чем мягкие ткани, и тем самым создают достаточный контраст по отношению к исследуемым органам. Вещества, задерживающие излучение сильнее, чем мягкие ткани, называют рентгенопозитивными. Они созданы на основе тяжелых элементов — бария или йода. В качестве же рентгенонегативных веществ используют газы: закись азота, углекислый газ, кислород, воздух. Основные требования к рентгеноконтрастным веществам очевидны: их максимальная безвредность (низкая токсичность), быстрое выведение из организма.
Существуют два принципиально различных способа контрастирования органов. Один из них заключается в прямом (механическом) введении контрастного вещества в полость органа — в пищевод, желудок, кишечник, в слезные или слюнные протоки, желчные пути, мочевые пути, в полость матки, бронхи, кровеносные и лимфатические сосуды. В других случаях контрастное вещество вводят в полость или клетчаточное пространство, окружающее исследуемый орган (например, в забрюшинную клетчатку, окружающую почки и надпочечники), или путем пункции - в паренхиму органа.
Второй способ контрастирования основан на способности некоторых органов поглощать из крови введенное в организм вещество, концентрировать и выделять его. Этот принцип — концентрации и элиминации — используют при рентгенологическом контрастировании выделительной системы и желчных путей.
В некоторых случаях рентгенологическое исследование проводят одновременно с двумя рентгеноконтрастными средствами. Наиболее часто таким приемом пользуются в гастроэнтерологии, производя так называемое двойное контрастирование желудка или кишки: в исследуемую часть пищеварительного канала вводят водную взвесь сульфата бария и воздух.
Можно выделить 5 типов приемников рентгеновского излучения: рентгеновскую пленку, полупроводниковую фоточувствительную пластину, флюоресцирующий экран, рентгеновский электронно-оптический преобразователь, дозиметрический счетчик. На них соответственно построены 5 общих методов рентгенологического исследования: рентгенография, электрорентгенография, рентгеноскопия, рентгенотелевизионная рентгеноскопия и дигитальная рентгенография (в том числе компьютерная томография).
Применение цифровых технологий в современной рентгеновской медицинской диагностики
Цифровые рентгены в настоящее время пользуются большим спросом и постепенно вводиться даже в муниципальные медицинские учреждения. Преобразование традиционной рентгенограммы в  цифровой  массив  с последующей возможностью обработки рентгенограмм методами вычислительной техники стало распространенным процессом. Такие аналоговые системы зачастую имеют  очень  жесткие  ограничения на экспозицию из-за малого динамического диапазона рентгеновской пленки.  В отличие от аналоговых прямые цифровые  рентгенографические  системы позволяют получать диагностические изображения без промежуточных носителей, при любом необходимом уровне дозы, причем это изображение можно обрабатывать и отображать самыми различными способами.
Во всех дигитальных устройствах изображение строится в принципе одинаково. Каждая «дигитальная» картинка состоит из множества отдельных точек. Каждой точке изображения приписывается число, которое соответствует интенсивности ее свечения (ее «серости»). Степень яркости точки определяют в специальном приборе - аналого-цифровом преобразователе (АЦП). Как правило, число пикселей в одном ряду равно 32, 64, 128, 256, 512 или 1024, причем по ширине и высоте матрицы количество их равно. При величине матрицы 512 X 512 дигитальная картинка состоит из 262 144 отдельных точек.
Рентгеновское изображение, полученное в телевизионной камере, поступает после преобразования в усилителе на АЦП. В нем электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр. Таким образом, создается цифровой образ - цифровое кодирование сигналов. Цифровая информация поступает затем в компьютер, где обрабатывается по заранее составленным программам. Программу выбирает врач, исходя из задач исследования. При переводе аналогового изображения в цифровое происходит, конечно, некоторая потеря информации. Но она компенсируется возможностями компьютерной обработки. С помощью компьютера можно улучшить качество изображения: повысить его контрастность, очистить его от помех, выделить в нем интересующие врача детали или контуры. Например, созданное фирмой Сименс устройство «Политрон» с матрицей 1024 X 1024 позволяет добиться отношения «сигнал — шум», равного 6000:1. Это обеспечивает выполнение не только рентгенографии, но и рентгеноскопии с высоким качеством изображения. В компьютере можно сложить изображения или вычесть одно из другого.
Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходим цифро-аналоговый преобразователь (ЦАП). Его функция противоположна АЦП. Цифровой образ, «упрятанный» в компьютере, он трансформирует в аналоговое, видимое (осуществляет декодирование).
У цифровой рентгенографии большое будущее. Есть основания полагать, что она постепенно будет вытеснять обычную рентгенографию. Она не требует дорогостоящей рентгеновской пленки и фотопроцесса, отличается быстродействием. Она позволяет после окончания исследования производить дальнейшую (апостериорную) обработку изображения и передачу его на расстояние. Весьма удобно хранение информации на магнитных носителях (диски, ленты).
На данный момент мониторы на базе электронно-лучевой трубки (CRT) практически полностью уступили место мониторам на базе жидкокристаллической Панели (LCD), поэтому попробуем разобраться, что отличает специализированный медицинский LCD дисплей от обычного «бытового».
Высокая яркость и её преимущества
Изображение на экране цветного дисплея строится из точек (пикселей), каждая из которых представляет собой триаду ячеек жидкого кристалла с нанесенными перед ней светофильтрами, которые обеспечивают красный, зеленый и синий цвета. Через эти ячейки проходит свет, излучаемый флуоресцентными лампами, расположенными за ЖК-панелью и, в зависимости от степени «открытия» жидкого кристалла, получается тот или иной оттенок цвета. В чернобелых дисплеях эти светофильтры отсутствуют, в связи с чем, максимальная яркость выходящего света увеличивается более чем в два раза. Чем шире диапазон яркости, тем проще становится различить близкие по плотности слабо-различимые участки снимка. Становятся хорошо заметны оттенки близкие к белому (90÷100)% уровни яркости или близкие к черному (0÷10)% уровни яркости. Особенно отчетливо это преимущество ощущается, например, при просмотре слабоконтрастных снимков нормального легочного рисунка, несмотря на малую интенсивность его теневого отображения.
Жидко кристаллические панели
Несмотря на то, что производителей мониторов на сегодняшний день великое множество, ЖК-панели, основу этих мониторов, производит лишь небольшое количество компаний. Существуют различные типы панелей. Они отличаются по качеству передачи цветов, углам обзора (угол отклонения линии взгляда на монитор, при котором изображение не меняет своих свойств), времени отклика (скорости реакции на смену изображения) и, соответственно по стоимости. Если монитор предназначен для использования в области графики и дизайна, то нельзя приобретать обычный «офисный» монитор, потому как все цвета на экране будут искажены. В диагностических дисплеях применяют медицинские монохромные ЖК-панели, производство которых, сосредоточено на трех фирмах. Эти панели разработаны специально для того, чтобы отображение рентгеновских снимков на экране дисплея было максимально приближено к тем изображениям, которые рентгенологи привыкли видеть на пленках. Кроме того, панели на этапе производства монитора поэлементно настраиваются по яркости таким образом, чтобы засветка всего экрана была максимально равномерной. Производители относительно недорогих медицинских дисплеев этой настройки не производят.
Разрешение мониторов
Бытует мнение, что основное отличие медицинского монитора от бытового — это его повышенное разрешение. Это утверждение не верно, потому как лишь ограниченное число медицинских мониторов обладает разрешением, которое превышает стандартные для обычных мониторов параметры. Разрешение монитора, оптимально подходящего для того, или иного вида диагностики продиктовано разрешением рентгеновских аппаратов, производящих снимок. Так, например, ангиографы как правило производят снимки, разрешение которых не ревышает 1024x1024 точки. Таким образом, использование монитора с разрешением выше, чем 1.3МП (1280x1024), оказывается нецелесообразным. В то время, как цифровой маммографический аппарат создает снимки с разрешением 2294x1914. Очевидно, что при использовании монитора ниже 5МП (2560x2048) либо изображение не будет показано полностью, либо произойдет потеря в качестве. Наибольшая свобода выбора по разрешению приходится на мониторы, предназначенные для томографии (КТ, МРТ) где стандартное разрешение снимка составляет 512x512 точек. В этом случае необходимо только определить, какое количество снимков должно одновременно отображаться на экране. Визуализация должна вселять врачу-рентгенологу уверенность в безусловном отображении на цифровых изображениях патологий, как например ранние стадии очагового туберкулеза. Именно поэтому не рекомендуется применять дисплеи меньшего разрешения, чем предписано для определенного вида диагностики. Из-за недостатка разрешения мелкие детали снимка могут потеряться.
Шкала серых тонов.
Большинство медицинских мониторов имеют 10-ти битную (1024 оттенка) шкалу, в то время как бытовые мониторы способны отобразить лишь 256 оттенков. Более того, эти 1024 оттенка распределены по шкале таким образом, чтобы передать изображение максимально подходящим для глаза рентгенолога. Эта возможность обеспечивается за счет наличия внутренней палитры оттенков, из которой и подбираются 1024, необходимых для качественного отображения. Размер такой палитры может достигать более 8000 оттенков. Необходимо учитывать, что далеко не каждый медицинский монитор обеспечивает такую возможность. В основном это мониторы высокого класса. Кроме этого, необходимо разрабатывать методики чтения цифровых рентгеновских изображений с экрана дисплея. (Линденбратен Л.Д. «Методика чтения рентгеновских снимков» — М.: Медицина, 1971.-362с).
«Точка белого», оттенок свечения мониторов.
Очень часто в радиологии используются медицинские мониторы в паре (два монитора, которые располагаются рядом для расширения рабочего поля и диагностических возможностей). В таких случаях особенно остро встает вопрос несоответствия мониторов по оттенку отображения снимков, потому как если два рядом стоящих монитора не будут одинаковыми по этому показателю, существенно повысится утомляемость глаз и, как следствие, качество постановки диагноза. Несоответствие оттенка у различных мониторов объясняется достаточно просто. Система подсветки построена на основе флуоресцентных ламп с холодным катодом. Физически сложно найти две лампы, оттенок света которых был бы одинаковым, а если мы говорим о множестве ламп, составляющих систему подсветки, то задача многократно усложняется. Найти два монохромных монитора, которые были бы одинаковыми по оттенку не простая задача. Производители «дорогих» мониторов решают эту проблему подбором одинаковых мониторов после производства. В таком случае эти мониторы поставляются только попарно. На сегодняшний день единственные медицинские мониторы, в которых эта характеристика является настраиваемым — это мониторы производства компании NEC Display Solutions серии MD21GS. Это обеспечивается за счет использования уникальной системы подсветки по технологии X-Light.
Калибровка мониторов
Под калибровкой медицинских мониторов подразумевается настройка за счет специальных инструментов правильного отображения градаций серого. «Правильность отображения» документально описана в главе 14 принятого стандарта DICOM для показа медицинских изображений. Необходимо это в первую очередь для обеспечения максимальной читаемости снимка, а также для того, чтобы в различных медицинских учреждениях на различных дисплеях один и тот же снимок отображался одинаково. После калибровки все данные записываются в калибровочную таблицу (LUT), которая может находиться либо в мониторе, либо в графическом адаптере (в компьютере). Максимальный результат достигается в том случае, если сам монитор оснащен встроенной LUT с возможностью аппаратной калибровки (независимо от рабочей станции, к которой монитор подключен). Вследствие многих технологических факторов, а также факторов окружающей среды, исходная калибровка монитора не может держаться вечно: и через некоторое время качество визуализации ухудшается. Вследствие этого необходимы постоянные перекалибровки мониторов (как минимум 1 раз в полгода). На относительно дешевых медицинских мониторах срок, по истечении которого требуется повторная калибровка, существенно сокращается. Это приводит к преждевременному ухудшению качества отображения. А также к дополнительным финансовым либо трудозатратам в зависимости от того, будет ли калибровка производиться посторонним мастером, либо своим сотрудником при помощи собственного калибровочного оборудования. Помимо качества отображения градаций серого также важен оттенок свечения экрана. Лампы подсветки со временем желтеют, в связи с чем, оттенок уходит в сторону желтого спектра. К сожалению, это практически неизбежно. У более дешевых мониторов изображение существенно желтеет примерно после 10 тысяч часов работы. Производители высококлассных медицинских мониторов гарантируют постоянство оттенка до 20 тысяч часов. Компания NEC, использующая, как было упомянуто выше, запатентованную систему подсветки X-Light, гарантирует постоянство оттенка на протяжении всего срока службы. Более того, в течение 30 тысяч часов работы медицинские мониторы NEC не требуют перекалибровки.(2)

Список литературы

"1.Бару С.Е. Промышленное производство цифровых флюорографических аппаратов МЦРУ «Сибирь-Н» / С.Е. Бару, Ю.Г. Украинцев // Медицинская техника.-2004.-№1.-С.38..
Блинов Н.Н., Юкелис Л.И., Садиков П.В. Проблемы модернизации отечественной флюорографической службы // Пробл. туб., 2000; 6: 20–3.
2.Медицинский алфавит. Радиология 12/2007 c. 21-23
3.И.В. Раевский, Г.Ф. Пашнина «Опыт применения микродозовой цифровой рентгеновской установки «Сибирь-Н» в диагностике заболеваний околоносовых пазух и носоглотки, М: Челябинск, 2007
4.http://www.medsyst.ru/catalog/radiodiagnosis/mammography.html
5.http://www.mc21.ru/kids/service/rentgenograpy/
6.http://med-lib.ru/speclit/ftiz/9.php
"
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.0049
© Рефератбанк, 2002 - 2024