Вход

Повышение параметров качества поверхности и малоцикловой долговечности гребенного вала

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 322251
Дата создания 08 июля 2013
Страниц 83
Мы сможем обработать ваш заказ (!) 18 сентября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
4 610руб.
КУПИТЬ

Содержание

Содержание
1. Введение
2. Общая часть
3. Специальная часть
3.1 Расчёт геометрических размеров корпуса аппарата
3.2 Подбор и расчет привода
3.3 Выбор уплотнения
0.1 3.4 Расчет элементов механического перемешивающего устройства
3.4.1 Расчёт вала мешалки
3.4.2 Подбор подшипников качения
3.4.3 Расчёт лопастей
3.4.4 Подбор шпонки
3.5 Выбор и проверочный расчет опор аппарата
3.6 Подбор муфты и фланцевого соединения
4. Безопасность жизнедеятельности
4.1 Промышленная безопасность
4.2 Экологическая безопасность
4.3 Безопасность в техногенных чрезвычайных ситуациях
5. Защита от коррозии и выбор конструкционных материалов
5.1 Введение
5.2 Характеристика условий эксплуатации аппарата
5.3 Характеристика обрабатываемых аппаратом материалов с позиции коррозионного воздействия
5.4 Прочие факторы возникновения и развития коррозии в аппарате
5.5 Выбор материалов для узлов смесительного аппарата
5.6 Выводы по коррозионной защите
6. Технико- экономическое обоснование
6.1. Задание на проектирование
6.2. Технико- экономические достижения модернизированного смесителя
.6.2.1 Вероятность безотказной работы
6.2.2 Коэффициент технического использования
6.2.3 Наработка на отказ
6.3. Экономическая целесообразность модернизации смесителя для предприятия- изготовителя
6.3.1 Расчет ожидаемой отпускной цены нового опытного смесителя
0.1.1 6.3.2 Определение рентабельности
6.3.3 Расчет прибыли (выручка предприятия от реализации смесителя без налогов)
6.4. Целесообразность использования модернизированного смесителя предприятием- потребителем
6.4.1 Текущие расходы
6.4.2 Единовременные капитальные вложения
6.4.3 Амортизация оборудования
6.4.4 Суммарные эксплуатационные годовые расходы
6.4.5 Определение годового объема реализуемой продукции у потребителя при использовании опытного смесителя
6.4.6 Экономический эффект на предприятии- потребителе от применения нового агрегата
7. Заключение
Библиографический списо

Введение

Повышение параметров качества поверхности и малоцикловой долговечности гребенного вала

Фрагмент работы для ознакомления

В исследовании была установлена зависимость между режимом обкатки роликами и глубиной упрочненного слоя, поверх­ностной твердостью и остаточными напряжениями при обкатке круп­ногабаритных судовых валов, изготовленных из материала S25C, S35С и S45С. Результаты усталостных испытаний образцов под­твердили наличие упрочненного слоя. В результате обкатки вала диаметром 300 мм (сталь S25С) при нагрузке на ролик 8т (500 кгс/мм2), окружной скорости 122 мм/сек, и скорости подачи 3 мм/мин глубина упрочненного слоя достигает 25 мм и изменяется от 230 единиц на поверхности до 155 единиц по Виккерсу на глу­бине 25 мм. С увеличением числа проходов твердость и глубина упрочненного слоя увеличиваются незначительно. Влияние величины нагрузки на ролики при обкатке на глу­бину упрочненного слоя и поверхностную твердость видно из рис Исследование проводилось на образцах диаметром 300 мм (сталь S25С) и диаметром 280 мм (сталь S45С). Окружная скорость вращения вала составляла 122 мм/сек, скорость подачи - 3 мм/мин. Из рисунка, максимальная глубина упрочненного слоя отмечается при нагрузке на ролики 10 т; эта нагрузка и считается оптимальной.
Выше показано влияние скорости подачи роликов на поверхностную твердость, глубину упрочненного слоя и уменьшение диаметра образца в случае, когда нагрузка на ролики увеличивалась от 0 до 8 т, а промежуточные проходы проводились при нагрузках 4 и 6 т. Скорость обкатки при этом была постоянной и составляла 59 мм/сек. Из рисунка видно, что поверхностная твердость и глубина упрочненного слоя быстро увеличиваются, если скорость подачи составляет менее 4 мм/мин.
Величина нагрузки на ролики влияет на твердость и глубину упрочненного слоя. Образцы диаметром 280 мм (сталь S45С) были обкатаны при следующих режимах: 0 – 2 – 4 т, 0 – 4 – 6 т; 0 – 4 – 6 – 8 т; окружная скорость составляла 59 мм/сек, а скорость подачи 0,483 – 10,160мм/мин.
График 2. Характеристики материалов после различных режимов обкатки
Из графика видно, что скорость подачи имеет большое значение в том случае, если нагрузка на ролики достигает значительной величины.
Произведены усталостные испытания обкатных образцов валов, с насадками и без них на изгиб при вращении. Образцы изготавливали из отожженной кованой стали S25C. Режим обкатки следующий: 0 – 2, 0 – 2,7т.
Окружная скорость 67 мм/сек., скорость подачи 3,17 мм/сек. Расчетный натяг прессовой посадки составлял 1,3/1000. Предел усталости неупрочненного об­разца с насадкой составлял 15,5 кгс/мм2, а предел усталости обкатанно­го, равный 23,5 кгс/мм2 (кри­вая 3), оказался даже не­сколько выше не упрочненного гладкого образца (22 кгс/мм2, кривая 2). Предел выносливости гладкого обкатанного образца достиг 26 кгс/мм2 (кривая 4).
Для выявления эффективности упрочнения при увеличении диаметра подступичной части вала были проведены испытания накатанных и не накатанных образцов диаметром 184 мм из стали 35. Упрочнение накаткой производили на трех роликовом приспособ­лении с диаметром ролика 200 мм и профильным радиусом 8 мм: при давлении на ролик 1500 кг. После накатки образцы обтачивали до кл.6. Припуск под накатку и окончательную обработку составлял 0,6 мм на диаметр. Глубина упрочненного слоя при исследовании косого шлифа составила 7,5 мм (0,04d). Способ формирования сту­пиц и осей - тепловой с натягом 0,2 мм.
Результаты усталостных испытаний показали, что предел уста­лости образцов осей диаметром 184 мм, упрочненных накаткой, составил 15,8 кгс/мм2 против 6 кгс/мм2 для не упрочненных осей.
На валу, подвергаемом обкатке, оставляют припуск 0,127- 0,254 мм, если же вал после обкатки протачивается, припуск составляет 0,32 мм. Операция обкатывания уменьшает диаметр вала на 0,0254- 0,0508 мм. Нагрузка на ролик прилагается постепенно на расстоянии 50 мм по валу перед зоной обкатывания и уменьшается до нуля на таком же расстоянии за ней. Обкатка конус начинается на валу, направление должно быть от большого конуса к малому. При обкатке может применяться качественное машинное мас­ло. Длина упрочненной поверхности должна быть: для гребного вала, размещенного в дейдвудной трубе, один диаметр вала по длине или не менее чем 457 мм в нос от носового торца конуса вала; для гребного вала, расположенного в кронштейне, то же, что и для предыдущего вала, плюс 305 мм в корму от носового конца кормовой облицовки. Для уменьшения влияния фреттинга рекомендуется также обкатку производить под концами облицовок и под ступицей.
Обкатывание роликами и шариками исполь­зуются не только для упрочнения поверхностного слоя, но и для улучшения шероховатости и геометрической формы поверхностей. Пластическая деформация осуществляется путем обкатывания обрабатываемой поверхности деформирующим элементом (роли­ком или шариком).
Существующие способы можно классифицировать по принципу действия инструмента - обкатывание инструментом непрерывного и ударного (импульсного) действия. Инструмент первого типа обес­печивает постоянный контакт с обрабатываемой поверхностью, при статическом характере приложенной к нему нагрузки; сжи­маемый металл течет в направлении подачи инструмента. При ра­боте инструмента ударного действия отсутствует постоянный кон­такт между ним и обрабатываемой поверхностью, о которую он ударяется и от которой отскакивает.
По конструкции инструмент непрерывного действия можно разделить на два вида: бессепараторный, при котором деформи­рующие элементы (шарики, ролики) вращаются только вокруг своей оси; сепараторный, когда рабочие ролики изготовляют цель­ными и помещают в гнездах специального сепаратора, где они могут совершать более сложные движения.
В судовом машиностроении применяют в основном бессепара­торный инструмент: он более дешевый и позволяет обкатывать поверхности, различные по размерам и форме.
Рабочее усилие обкатывания может создаваться механиче­скими (пружины, винты), пневматическими, гидравлическими или комбинированными устройствами.
Механические устройства не требуют специального питания и потому являются более простыми, однако недостаточная ста­бильность величины рабочего усилия обкатки, особенно при обкатывании конических и фасонных поверхностей, снижает эф­фективность этих устройств.
Обкатывание одним роликом применяют для упрочнения по­верхностных слоев крупных жестких деталей, способных воспри­нимать значительные радиальные нагрузки (например, гребных и коленчатых валов). Для менее жестких деталей лучше пользо­ваться обкатками с двумя или тремя роликами.
Сепараторные обкатки выполняются преимущественно много ­роликовыми. В качестве деформирующего элемента могут слу­жить и шарики.
Рассмотрим основные параметры упрочняющего обкатывания бессепараторным инструментом.
Форму и размер ролика выбирают в зависимости от назначе­ния операции. Материал ролика- стали ХВГ, Р18, У10А и др. с твердостью НRС 60- 65.
Из применяемой конфигурации роликов для упроч­няющего обкатывания предпочтительны ролики со сферическим контуром, основной параметр которых—профильный радиус существенно влияние на характеристики наклепа. С уменьшением заданные зна­чения степени наклепа и оста­точных напряжений обеспечи­ваются при меньших усилиях обкатывания. Уменьшение диаметра роликов повышает также степень и глубину наклепа, однако, при этом может увеличиться шерохо­ватость обрабатываемой поверх­ности.
Основным параметром ре­жима является усилие обкатывания, чрезмерное повышение которого может вызвать снижение остаточных сжимающих напряжений или перенаклеп, разрушаю­щий поверхностный слой. Вместе с тем малое усилие обкатывания понижает производительность и может не обеспечить заданных свойств поверхностного слоя.
Глубину наклепанного слоя металла при обкатывании сталь­ных деталей роликами можно приближенно определить по фор­муле
где - глубина наклепанного слоя, мм; Р- усилие обкатывания, Н (кгс); - предел текучести материала детали, МПа (кгс/мм2).
Для крупных валов разработана методика, согласно которой за единицу принято условное усилие , обеспечивающее глу­бину пластически деформированного слоя, равную 0,025 диа­метра вала.
Это усилие рассчитывают по формуле:
где D-диаметр упрочняемой поверхности, мм.
Для обеспечения необходимого и достаточного упрочнения ра­бочее усилие обкатывания Р принимают в пределах от 1,5 до 3,0 . Увеличение Р свыше 3,0 может привести к пере­наклепу и к снижению сжимающего напряжения. Кроме того, ра­бочее усилие ограничено наибольшим радиальным усилием, до­пускаемым прочностью и жесткостью слабого звена станка.
Продольная подача и скорость обкатывания (скорость враще­ния детали) незначительно влияют на свойства поверхностного слоя. При увеличении подачи сверх определенного предела (порядка 0,6- 0,8 мм/об) сжимающие напряжения начинают посте­пенно уменьшаться.
Увеличение скорости обкатывания сверх 0,5 м/с (30 м/мин) также несколько снижает сжимающие напряжения. При обработке крупных деталей наибольшая скорость: обкатывания не должна превышать 0,83- 1,33 м/с (60- 80 м/мин), чтобы исключен был на­грев поверхности, который может снизить упрочняющий эффект обкатывания.
Число проходов следует принимать не более двух- трех. Обкатывание длинных изделий желательно выполнять за один проход. Большее число проходов применяют для повышения чистоты, а также при обкатывании маложестких деталей.
При чистовом обкатывании пластически деформируют только тонкий поверхностный слой, толщина которого примерно равна высоте шероховатостей, оставшихся после механической обработки (или немного превышает ее). Гребешки неровностей сминаются и затекают в смежные впадины. Весьма эффективно совмещение упрочняющего и чистового обкатывания.
Глава 3. Конструкторский раздел
3.1. Сравнительный анализ методов улучшения характеристик валов
На долговечность гребного вала в значительной степени оказывают влияние технологические факторы. Недостаточная чистота, риски, царапины, надрезы, плохое прилегание сопрягаемых поверхностей ступицы и облицовки с валом приводят к снижению усталостной прочности гребных валов. В особенности тщательность обработки вала должна соблюдаться в районе подступичной части, под концом кормовой облицовки, а также между торцами ступицы и облицовки. Чистота поверхности конуса должна быть 7 кл., а в промежутке между торцами ступицы и облицовки 8кл. - 9кл.
Уменьшение фреттинга под ступицей со стороны большого основания конуса можно достигнуть за счет увеличения площади контакта между ступицей и валом. Чем больше площадь прилегания, тем меньше будут напряжения в пятнах контакта и тем меньше будет возможность возникновения усталостных трещин у границ пятен. Считается, что для гребных валов диаметром б­олее 400 мм прилегание ступицы и вала в районе большого основания конуса на длине 200- 300 мм должно быть не менее четырех пятен на площади 25 х 25 мм.
Как показали исследования, усталостная прочность валов с напрессовками может быть значительно повышена применением в сопряжении лаковых пленок. Весьма благоприятно сказывается на прочности вала сочетание упрочняющей накатки подступичной части с лаковым покрытием. В работе для получения лаковой пленки использовали клей (лак) ВДУ-3 и эластомер ГЭН-150, ко­торые обеспечивают создание прочной пленки с хорошей адгезией к металлу. Были испытаны в составе прессовых соединений при кру­говом изгибе образцы диаметром 60, 90 и 178 мм.
При изготовлении образцов диаметром 30 мм посадочную поверхность обезжиривали ацетоном и покрывали лаком ВДУ-3 с по­мощью кисточки. После полимеризации первого слоя в течение 30 мин при температуре 100-120°С и остывания образца наносили второй слой с последующей полимеризацией при температуре 140- 150° С в течение часа. При изготовлении образцов, имеющих покрытие с присадкой дисульфид-молибдена, посадочную поверхность образца покрывали пастой, состоящей из 65% растворенного лака ВДУ-3 и 25% тонко измельченного порошка дисульфид- молибдена, Лаковые покрытия наносили на образцы диаметром 90 и 178 мм методом напыления на токарном станке краскораспылителем марки КР-10.
В качестве растворителя лака ВДУ-3 применяли специальный состав: 50% ацетона, 35% бутил ацетата и 15% толуола. На каждые 10 весовых единиц сухого лака ВДУ-3 брали 90 весовых единиц растворителя. Для растворения эластомера ГЭН-150 использовали состав: 50% ацетона и 50%. бутил ацетата. На 95 весовых единиц растворителя брали 5 весовых единиц ГЭН-150. Поверхность вала перед нанесением покрытия тщательно обезжиривали бензолом и ацетоном. После нанесения лаковой пленки производили полимеризацию нагревали деталь до температуры 150—160°С с выдержкой при этой температуре 40- 60 мин.
Анализ опытных данных и исследования поверхности испытанных образцов позволили сделать выводы, что применение лаковых покрытий обеспечивает повышение усталостной прочности по излому в зоне напрессованных деталей при диаметре образца 30 мм на 18- 20%, 90 мм на 30- 32% и 180 мм на 40%. Было также замечено, что у образцов с лаковым покрытием резко снижалось выделение продуктов фретинг- коррозии; повреждения от фретинга были значительно меньше как по величине площади, так и по глубине.
У образцов с нанесением в зоне сопряжения лакового покрытия с присадкой дисульфид молибдена после 14 х 106 циклов нагружений при расчетном напряжении 13 кгс/мм2 произошла самопроизвольная распрессовка образца, что явилось, очевидно, следствием снижения коэффициента трения при применении дисульфид молибдена.
Еще более эффективное повышение прочности валов в зоне напрессовок дает упрочняющая обкатка с последующим лаковым покрытием. Были испытаны образцы диаметром 30 мм с упрочняющей накаткой подступичной поверхности, с накаткой и с лаковым покрытием. Для сравнения проведены также усталостные ис­пытания контрольных образцов (обычная напрессовка) и образцов с лаковой пленкой. Проведенные испытания на базе 300 млн. циклов позволили сделать вывод, что применение лаковой пленки для образцов, упрочненных накаткой, обеспечивает дополнительное повышение усталостной прочности примерно на 20%. При этом предел выносливости накатанных образцов с лаковой пленкой со­ставил 18,5 кгс/мм, накатанных - 15,5 кгс/, с лаковой плен­ной — 12,7 кгс/мм2 и контрольных — 10,3 кгс/мм2.
Валопровод судов типа «Бежица» подвержен крутильным коле­баниям, вследствие чего конуса гребных валов весьма часто имеют повреждения из-за фретинг- коррозии. Во избежание этого на теплоходе «Брянский рабочий» под руководством ЦНИИТС была занесена лаковая пленка ГЭН-150 на конус гребного вала диамет­ром 510 мм. Поверхность конуса вала перед нанесением пленки была очищена и тщательно обезжирена ацетоном и спиртом. Эластомер ГЭН-150 наносили на конус вала при его вращении со скоро­стью 12,5 об/мин, краскораспылителем марки С-765 с диаметром сопла 1,8 мм. Состав наносили в четыре слоя с промежуточной сушкой в течение 10- 15 мин. Полимеризацию пленки производили при температуре 160°С с помощью переносной электронагревательной печи, которую подключали через трансформатор ТСД- 1000 при силе тока 1000А и напряжении 75 В. Поверхность пленки была ровной и глянцевой. Толщина ее, измеренная прибором ИТП-1, со­ставила 25- 27 мкм. Гребной винт был насажен на вал, и судно находится в эксплуатации до очередного освидетельствования.
С целью уменьшения фретинг- коррозии между бронзовой об­лицовкой и валом и создания условий для гашения вибрационных и динамических нагрузок, некоторые исследователи считают перспективным замену горячей насадки облицовки на валу формированием соедине­ния с помощью клеевой полимерной композиции. В 1962 г. таким образом была осуществлена насадка облицовки на гребной вал буксира «Шахтер». В 1965 г. были опубликованы данные об опытной насадке бронзовой облицовки на стальной вал диаметром 300 мм, длиной 2,8 м с помощью клеевой композиции на основе эпоксидной смолы Araldit SW-404 (режим отверждения: 20- 25°С в течение 4- 5 ч). Насадка облицовки на вал производилась с зазором 1,5- 2,5 мм, который заполнялся клеевой полимерной ком позицией под высоким давлением, благодаря которому обеспечивался необходимый натяг облицовки на валу. Та­кой метод насадки облицовок на гребные валы позволяет производить механическую обработку сопрягаемых поверхностей с точностью ±0,5 мм, обеспечивает дополнительную защиту вала от коррозии, а также исключает необходимость применения больших нагревательных устройств для горячей насадки или мощных прессов для напрессовки.
Одним из наиболее эффективных и технологически доступных средств повышения циклической прочности и надежности гребных валов является холодная обкатка поверхности. Наряду с упрочнением накатывание улучшает качество поверхности и износоустой­чивость. Расходы на накатывание не идут ни в какое сравнение с технико- экономическим эффектом повышения эксплуатационной долговечности и надежности обкатанных деталей.
Е. С. Рейнбергом предложена методика определения основных параметров обкатки судовых гребных валов. Из большого числа параметров обкатки (размеры обкатываемого вала, размеры ролика, давление на ролик, подача ролика, скорость накатывания и число проходов) наибольшее влияние на повышение циклической проч­ности вала оказывает величина давления обкатки. Это давление вызывает наклеп, повышение твердости поверхностного слоя и оста­точные напряжения сжатия. Существенное влияние на глубину наклепа, а также на величину остаточных напряжений у поверх­ности оказывают размеры упрочняющего ролика (его диаметр и профильный радиус).
В исследовании была установлена зависимость между режимом обкатки роликами и глубиной упрочненного слоя, поверх­ностной твердостью и остаточными напряжениями при обкатке круп­ногабаритных судовых валов, изготовленных из материала S25C, S35С и S45С. Результаты усталостных испытаний образцов под­твердили наличие упрочненного слоя. В результате обкатки вала диаметром 300 мм (сталь S25С) при нагрузке на ролик 8т (500 кгс/), окружной скорости 122 мм/сек, и скорости подачи 3 мм/мин глубина упрочненного слоя достигает 25 мм и изменяется от 230 единиц на поверхности до 155 единиц по Виккерсу на глу­бине 25 мм. С увеличением числа проходов твердость и глубина упрочненного слоя увеличиваются незначительно. Влияние величины нагрузки на ролики при обкатке на глу­бину упрочненного слоя и поверхностную твердость видно из рис Исследование проводилось на образцах диаметром 300 мм (сталь S25С) и диаметром 280 мм (сталь S45С). Окружная скорость вращения вала составляла 122 мм/сек, скорость подачи - 3 мм/мин. Из анализа результатов эксперимента видно, что максимальная глубина упрочненного слоя отмечается при нагрузке на ролики 10 т; эта нагрузка и считается оптимальной.
Далее было проанализировано влияние скорости подачи роликов на поверхностную твердость, глубину упрочненного слоя и уменьшение диаметра образца в случае, когда нагрузка на ролики увеличивалась от 0 до 8 т, а промежуточные проходы проводились при нагрузках 4 и 6 т. Скорость обкатки при этом была постоянной и составляла 59 мм/сек. Из результатов эксперимента видно, что поверхностная твердость и глубина упрочненного слоя быстро увеличиваются, если скорость подачи составляет менее 4 мм/мин.
Величина нагрузки на ролики влияет на твердость и глубину упрочненного слоя. Образцы диаметром 280 мм (сталь S45С) были обкатаны при следующих режимах: 0 – 2 – 4 т, 0 – 4 – 6 т; 0 – 4 – 6 – 8 т; окружная скорость составляла 59 мм/сек, а скорость подачи 0,483 – 10,160мм/мин.
Результаты эксперимента показали, что скорость подачи имеет большое значение в том случае, если нагрузка на ролики достигает значительной величины.
Для выявления эффективности упрочнения при увеличении диаметра подступичной части вала были проведены испытания накатанных и не накатанных образцов диаметром 184 мм из стали 35. Упрочнение накаткой производили на трех роликовом приспособ­лении с диаметром ролика 200 мм и профильным радиусом 8 мм: при давлении на ролик 1500 кг. После накатки образцы обтачивали до кл.6. Припуск под накатку и окончательную обработку составлял 0,6 мм на диаметр. Глубина упрочненного слоя при исследовании косого шлифа составила 7,5 мм (0,04d). Способ формирования сту­пиц и осей —тепловой с натягом 0,2 мм.

Список литературы

1.Бауман В.А., Клушанцев Б.В., Мартынов В.Р. Механическое оборудование заводов строительных материалов, изделий и конструкций. М., Машиностроение, 1975
2.под ред. И.П.Бородачева. Справочник конструктора технологических машин. М., Машиностроение, 1973
3.Борщевский А.А. и др. Механическое оборудование для производства строительных материалов и изделий. М., Высшая школа, 1987
4.Генкин А.Э. Оборудование химических заводов. М., Высшая школа, 1986
5.Гоберман Л.А., Степанян К.В. Технологическое оборудование химических производств. Атлас конструкций. М., Машиностроение, 1985
6.Дунаев П.Ф., Лёликов О.П. Конструирование узлов и деталей машин. М., Высшая школа, 1985
7.Лащинский А.А., Толчинский А. Р. Основы конструирования и расчёта химической аппаратуры. Справочник. М., Машиностроение, 1970
8.Лещинский А.В. Основы теории и расчета оборудования смесительных установок. Хабаровск, Издательство ХГТУ, 1998
9.Сапожников И.Я. Машины и аппараты промышленности строительных материалов. Атлас конструкций. М., Машгиз, 1961
10.Хлёсткина В.Л. Расчёт и конструирование аппаратов с перемешивающими устройствами. Уфа, 1988
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00513
© Рефератбанк, 2002 - 2024