Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код |
317941 |
Дата создания |
08 июля 2013 |
Страниц |
22
|
Мы сможем обработать ваш заказ (!) 25 ноября в 12:00 [мск] Файлы будут доступны для скачивания только после обработки заказа.
|
Содержание
Введение
1. Теоретические основы суждения
1.1 Понятие и сущность суждения
1.2 Суждение и предложение
1.3 Простые суждения
2. Практическая часть
2.1 Распределенность терминов в категорических суждениях
2.2 Сложные суждения
2.3 Способы отрицания суждений
2.4 Совместимые суждения
Заключение
Список использованной литературы
Введение
Суждение и его виды.
Фрагмент работы для ознакомления
Объединенная классификация простых категорических суждений по количеству и качеству
В каждом суждении имеется количественная и качественная характеристика. Поэтому в логике применяется объединенная классификация суждений по количеству и качеству, на основе которой выделяются следующие 4 типа суждений.
А — общеутвердительное суждение. Структура его: «Все S есть Р». Например, «Все люди — позвоночные».
I — частноутвердительное суждение. Структура его: «Некоторые S есть Р». Например, «Некоторые элементарные частицы имеют положительный заряд». Условные обозначения для утвер-дительных суждений взяты от слова affirmo — утверждаю (при этом берутся две первые гласные буквы: А — для обозначения общеутвердительного и I — для обозначения частноутвердитель-ного суждения).
Е — общеотрицательное суждение. Его структура: «Ни одно S не есть Р». Пример: «Ни один дельфин не является рыбой».
О — частноотрицательное суждение. Структура его: «Некоторые S не есть Р». Например, «Некоторые люди не являются долгожителями». Условные обозначения для отрицательных суждений взяты от слова nego — отрицаю[2, стр. 102-105].
2. Практическая часть
2.1 Распределенность терминов в категорических суждениях
В суждениях термины S и Р могут быть либо распределены, либо не распределены. Термин считается распределенным, если его объем полностью включается в объем другого термина или полностью исключается из него. Термин будет нераспределенным, если его объем частично включается в объем другого термина или частично исключается из него. Проанализируем четыре вида суждений: А, I, Е, О (мы рассматриваем типичные случаи).
Суждение А общеутвердительное. Его структура: «Все S есть Р».
Рассмотрим 2 примера.
1-й случай. В суждении «Все караси — рыбы» субъектом является понятие «карась», а предикатом — понятие «рыба». Квантор общности — «все». Субъект распределен, так как речь идет о всех карасях, т. е. его объем полностью включен в объем предиката. Предикат не распределен, так как в суждении речь идет лишь о той части объема предиката, которая совпадает с объемом субъекта.
Распределенность терминов в суждениях можно иллюстрировать с помощью круговых схем Эйлера. В таблице 1 изображено соотношение S и Р в суждении А. Заштрихованная часть круга характеризует распределенность (или нераспределенность) терминов.
Если объем Р больше (шире) объема S, то Р не распределен.
2-й случай. В суждении «Все квадраты — равносторонние прямоугольники» термины такие: S — «квадрат», Р — «равносторонний прямоугольник», квантор общности — «все». В этом суждении S распределен и Р распределен, так как их объемы полностью совпадают таблица 1.
Если S равен по объему Р, то Р распределен. Это бывает в определениях и в выделяющих общих суждениях5.
Суждение I частноутвердительное. Его структура: «Некоторые S есть Р». Рассмотрим два случая.
1-й случай. В суждении «Некоторые инженеры — филателисты» термины такие: S — «инженер», Р — «филателист», квантор существования — «некоторые». Соотношение S и Р изображено в таблице и 1. Субъект не распределен, так как в нем мыслится только часть инженеров, т. е. объем субъекта лишь частично включается в объем предиката. Предикат тоже не распределен, так как он также лишь частично включен в объем субъекта (только некоторые филателисты являются инженерами).
Если понятия S и Р перекрещиваются, то Р не распределен.
2-й случай. В суждении «Некоторые писатели — драматурги» термины такие: S — «писатель», Р — «драматург», квантор существования — «некоторые». Субъект не распределен, так как в нем мыслится только часть писателей, т. е. объем субъекта лишь частично включается в объем предиката. Предикат распределен, так как объем предиката полностью входит в объем субъекта (рис. 37). Таким образом, Р распределен, если объем Р меньше объема S, что бывает в частных выделяющих суждениях.
Суждение Е общеотрицательное. Его структура: «Ни одно S не есть Р ». Например, «Ни один лев не есть травоядное животное». В нем термины такие: S — «лев», Р — «травоядное животное», квантор общности — «ни один». Здесь объем субъекта полностью исключается из объема предиката, и наоборот. Позтому и S, и Р распределены таблица 1.
Суждение О частноотрицательное. Его структура: «Некоторые S не есть Р». Например, «Некоторые учащиеся не являются спортсменами». В нем такие термины: S — «учащийся», Р — «спортсмен», квантор существования — «некоторые». Субъект не распределен, так как мыслится лишь часть учащихся, а предикат распределен, ибо в нем мыслятся все спортсмены, ни один из которых не включен в ту часть учащихся, которая мыслится в субъекте таблица 1.
Распределенность терминов в категорических суждениях можно выразить в виде следующей схемы (табл. 1), где знаком (+) выражена распределенность термина, а знаком (-) его нераспределенность. В ней же дана объединенная информация о простых суждениях.
2.2 Сложные суждения
Пример 3
Сложные суждения образуются из простых суждений с помощью логических связок: конъюнкции, дизъюнкции, импликации, эквиваленции и отрицания.
Таблицы истинности этих логических связок следующие (табл. 2,3).
Буквы а, b, с — переменные, обозначающие суждения; буква «И» обозначает истину, а «Л» — ложь.
Таблицу истинности для конъюнкции (а ^ b) можно разъяснить на следующем примере. Учителю дали короткую характеристику, состоящую из двух простых суждений: «Он является хорошим педагогом (а) и учится заочно (b)». Она будет истинна в том и только в том случае, если суждения а и b оба истинны. Это и отражено в первой строке. Если же а ложно или b ложно, либо и а, и b ложны, то вся конъюнкция обращается в ложь, т. е. учителю была дана ложная характеристика.
Суждение: «Увеличение рентабельности достигается путем повышения производительности труда (а) или путем снижения себестоимости продукции (b)» — пример нестрогой дизъюнкции. Дизъюнкция называется нестрогой, если ее члены не исключают друг друга. Такое высказывание истинно в том случае, когда истинно хотя бы одно из двух суждений (первые три строки табл. 2), и ложно, когда оба суждения ложны.
Члены строгой дизъюнкции (а Ú b) исключают друг друга. Это можно разъяснить на примере: «Я поеду на юг на поезде (а) или полечу на самолете (b) ». Я не могу одновременно ехать на поезде и лететь на самолете. Строгая дизъюнкция истинна тогда, когда истинно лишь одно из двух простых суждений.
Таблицу для импликации (a®b) можно разъяснить на таком примере: «Если через проводник пропустить электрический ток (а), то проводник нагреется (b) »6. Импликация истинна всегда, кроме одного случая, когда первое суждение истинно, а второе ложно. Действительно, не может быть, чтобы по проводнику пропустили электрический ток, т. е. чтобы суждение (а) было истинным, а проводник не нагрелся, т. е. суждение (b) было ложным.
Эквиваленция в таблице (aºb) характеризуется так: aºb истинно в тех и только в тех случаях, когда и а, и b либо оба истинны, либо оба ложны.
Отрицание суждения a (т.е. а) характеризуется так: если а истинно, то его отрицание ложно, и если а ложно, то а истинно.
Если в формулу входят три переменные, то таблица истинности для этой формулы, включающая все возможные комбинации истинности или ложности ее переменных в таблице, будет состоять из 23 = 8 строк; при четырех переменных в таблице будет 2* = 16 строк; при пяти переменных в таблице имеем 25 = 32 строки; при переменных — 2 n строк (табл. 4, 5).
Алгоритм распределения значений И и Л для переменных (например, для четырех переменных а, b, с, d ) таков (табл. 4).
Имеем 24= 16 строк.
В столбце для а сначала пишем 8 раз «И» и 8 раз «Л».
В столбце для b сначала пишем 4 раза «И» и 4 раза «Л», затем повторяем и т. д.
Выполнимая формула та, которая может принимать по крайней мере одно значение «истина». Тождественно-истинной формулой называется формула, которая при любых комбинациях значений для входящих в нее переменных принимает значение «истина» (иначе она называется законом логики, или тавтологией). Тождественно-ложная формула та, которая соответственно принимает только значение «ложь» (она иначе называется противоречием).
Приведем доказательство тождественной истинности формулы((а®(b Ù c)) Ù(b Ú c))®a (табл. 5).
Так как в последней колонке мы имеем только значение «истина», формула является тождественно-истинной, или законом логики (такие выражения называют тавтологиями).
Итак, конъюнкция (a Ù b) истинна тогда, когда оба простых суждения истинны. Строгая дизъюнкция (a Ú b) истинна тогда, когда только одно простое суждение истинно. Нестрогая дизъюнкция (a Ú b) истинна тогда, когда хотя бы одно простое суждение истинно. Импликация (a®b) истинна во всех случаях, кроме одного: когда а истинно, a b ложно. Эквиваленция (aºb) истинна тогда, когда оба суждения истинны или оба ложны. Отрицание (а) истины дает ложь, и наоборот.
2.3 Способы отрицания суждений
Пример 4
Два суждения называются отрицающими или противоречащими друг другу, если одно из них истинно, а другое ложно (т. е. они не могут быть одновременно истинными или одновременно ложными) (табл. 6).
Отрицающими являются следующие пары суждений:
1. А— О. «Все S есть Р» и «Некоторые S не есть Р».
Список литературы
1.Гетманова А.Д. Учебник по логике. — М.: Че Ро, 2000.
2.Гусев Д.А. Логика: Учебное пособие для вузов. — М.: ЮНИТИ-ДАНА, 2004.
3.Гусев Д.А. Логика: Учебное пособие. — М.: МПСИ, 2005.
4.Ивин А.А.Логика: Учебное пособие. — М.: Знание, 1998.
5.Краткий словарь по логике. — М., 1991.
6.Свинцов В.И. Логика. Элементарный курс для гуманитарных специальностей. — М., 1998.
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00479