Вход

Фотоны-кванты света. понятие квантового поля

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 309244
Дата создания 08 июля 2013
Страниц 25
Мы сможем обработать ваш заказ (!) 29 марта в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
910руб.
КУПИТЬ

Содержание

СОДЕРЖАНИЕ
ВВЕДЕНИЕ
ФОТОНЫ
КВАНТОВОЕ ПОЛЕ
СТРУКТУРА ПОЛЯ ФОТОНА
ЗАКЛЮЧЕНИЕ
ПРИЛОЖЕНИЕ 1
ЛИТЕРАТУРА

Введение

Фотоны-кванты света. понятие квантового поля

Фрагмент работы для ознакомления

В поперечной электромагнитной волне эффективный радиус, по которому течет замкнутый электрический ток смещения (ток всегда замкнут). Когда течет круговой ток смещения поля , то смещается масса, так как поле обладает энергией и, соответственно, массой. Если умножить полевую массу фотона M = 2eФ0v/c2 на радиус кругового тока смещения поля и его скорость (скорость смещения поля равна скорости света ), то получим момент количества движения полевой массы.
В веществе токи смещения поля световых волн переходят в круговые поляризационные токи смещения. Т.е. происходит магнитное возмущение вещества и под действием внешнего магнитного поля может наблюдаться вращение плоскости поляризационных токов смещения, как результат прецессирования моментов количества движения электромагнитных возмущений - магнитооптический эффект Фарадея. Вращение плоскости поляризации света наблюдается только в веществе, так как магнитное поле на вихревые поля, не связанные с веществом, не может воздействовать.
Соотношение между ЭДС и энергией:
W = 2eФ0v = eU.
Получается, 1 В – 1.602·10-19 Дж, т.е. равен одному электронвольту. Таким образом, электромагнитный квант с ЭДС в один вольт обладает энергией, равной одному электронвольту (1 эВ = 1.602·10-19 Дж). Например, в фотоне с частотой 6·1014 Гц:
ток смещения – 1.923·10-4 А ( Iсм = 2ev );
ЭДС – 2.481 В ( U = 2Ф0v );
мощность – 4.771·10-4 Вт ( P = 4eФ0v2 );
энергия электрического потока – 1.988·10-19 Дж ( Wэ = eФ0v );
энергия магнитного потока – 1.988·10-19 Дж ( Wм = eФ0v );
электромагнитная энергия – 3.976·10-19 Дж ( W = 2eФ0v );
электромагнитная энергия в электронвольтах – 2.481 эВ ( We = 2Ф0v );
В скобках приведены электродинамические формулы, с помощью которых рассчитываются свойства фотона - кванта электромагнитного потока. Таким образом, в электромагнитных волнах дискретны токи смещения и энергия электрических и магнитных потоков. Для их вычисления достаточно знать частоту электромагнитного кванта, величину кванта электрического потока и кванта магнитного потока, либо вместо них, чисто для упрощения выражения, можно использовать коэффициент пропорциональности h = 2eФ0 = 6.626·10-34 Кл·Вб (произведение электромагнитных постоянных), представляющий квант электромагнитного потока, его еще называют квантом действия, искусственно изменяя размерность с Кл·Вб на Дж/Гц или Дж·с. Но использование только коэффициента пропорциональности не позволяет рассчитывать электродинамические параметры фотона : ток смещения, ЭДС и пр. То, что электродинамика через электромагнитные постоянные позволяет рассчитывать дискретные электромагнитные волны - фотоны, не является чем-то необычным, электродинамика и создана для того, чтобы объяснять и рассчитывать электромагнитные процессы.
Расчет фотона - это обычный электродинамический расчет электромагнитного возмущения только с элементарными потоками - электрическим и магнитным. Фотон, представляет электромагнитную волну, где, согласно электродинамике, энергия электрического потока равна энергии магнитного потока. В том, что элементарная частица фотон имеет такой же электрический поток, как, например, у частицы электрон, также нет ничего необычного - многие частицы имеют такой же элементарный электрический поток. При движении со скоростью света этот элементарный электрический поток представляет квант магнитного потока, так как магнитный поток - это движущийся электрический поток. В том, что частица фотон имеет электрический поток, но не имеет электрического заряда, также нет ничего необычного - электрические потоки материальны, обладают энергией (массой) и, согласно электродинамике, могут существовать без зарядов, так же как, например, магнитные потоки без полюсов. Электрический поток, как и заряд, измеряется в кулонах и представляет количество электричества.
Все кванты электромагнитного потока излучения отличаются только количественно: длиной волны, величиной тока смещения и энергией электрических и магнитных потоков. Сами же электрические и магнитные потоки у всех электромагнитных квантов одинаковы и равны кванту электрического и магнитного потоков.
Электродинамика позволяет однозначно ответить на вопрос, что такое фотон . Фотон - это квант электромагнитного потока излучения, состоящий из кванта электрического потока (1.602·10-19 Кл) и кванта магнитного потока (2.068·10-15 Вб). Движущееся квантовое (элементарное) электромагнитное возмущение образует парциальные электромагнитные волны, которые, согласно принципу Гюйгенса, за счет интерференции, не излучаются, а движутся вместе с электромагнитным квантом как единое целое, представляя пакет парциальных волн в виде цуга.
Фотон - это первая из элементарных частиц, у которой стало известно полевое строение и удалось сделать полный расчет всех свойств. Если встретится утверждение будто бы электродинамика не может рассчитывать фотоны, знайте, что это не соответствует действительности.
Описан линейно поляризованный фотон, циркулярно поляризованный также состоит из двух квантов - кванта электрического потока и кванта магнитного потока, но имеет циркулярно поляризованную полевую структуру.
Теперь более подробно о свойствах фотона.
«Начнем с простой механической аналогии. Если ударить по какому-либо месту натянутого шнура, то от места удара в противоположных направлениях побегут два поперечных возмущения.»2
Фотон является дискретной поперечной волной (поперечное возмущение); его свойства можно представить, рассмотрев другие поперечные волны, например, одиночный горб, бегущий вдоль по шнуру. Волновое возмущение, распространяясь по шнуру, переносит энергию, импульс и момент импульса. В начале горба шнур, поднимаясь (смещаясь), и в конце, опускаясь, образует момент импульса, который ориентирован поперечно направлению движения. Перенос момента количества движения отражает вихревой характер поперечных возмущений. Все поперечные возмущения переносят момент количества движения, ориентация которого зависит от типа поляризации. Линейно поляризованные возмущения, распространяющиеся по натянутому шнуру, имеют поперечную ориентацию момента количества движения, а циркулярно поляризованные - продольную.
Волны представляют распространяющиеся разноименные области возмущения, которые связаны с переменными (колебательными) потоками смещения среды.
Чтобы представить, как устроен фотон - квант света, надо проанализировать электродинамические процессы, протекающие в электромагнитной волне, рассмотреть полевую структуру поперечного возмущения, т.е. его вихревое электрическое поле , поток электрического смещения, ток смещения и пр.
Поперечные электромагнитные волны - это распространяющиеся со скоростью света поперечные электрические смещения поля, представляющие переменные токи смещения - вихревые электрические поля.
«...свет есть частный случай электромагнитных волн. От всех остальных электромагнитных волн свет отличается только количественно - длиной волны.»3
Согласно корпускулярно-волновому дуализму, фотоны нужно рассматривать не только как частицы, но и как электромагнитные волны. Дискретные электромагнитные потоки излучения представляют движущиеся электромагнитные кванты.
«... распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.»4
Электромагнитные волны представляют вихревые электрические поля, являющиеся дискретными, так как электрические потоки дискретны (квант электрического потока - элементарный электрический заряд). Движущийся электрический поток обладает магнитной индукцией, т.е. любое движущееся электрическое возмущение поля представляет электромагнитное возмущение - электромагнитный поток, состоящий из двух потоков - электрического и магнитного. Если движение происходит со скоростью света, то, согласно электродинамике, энергия электрического потока равна энергии магнитного потока.
Максвелл еще в 1873 году создал теорию электромагнитного поля и описал электромагнитные волны как возмущения в виде вихревых электрических полей, поэтому свет не является чем-то неизвестным. Существенное, что изменилось со времен Максвелла, - была установлена квантовая природа полей, а так как вихревое электрическое поле представляет поток смещения поля, его дискретность приводит к дискретности возмущений, т.е. к дискретности электромагнитных волн в виде квантов света - фотонов.
КВАНТОВОЕ ПОЛЕ
Квантовое поле - система с несохраняющимся в силу высоких энергий числом частиц.
В первом приближении квантовое поле можно представить как пространство, заполненное квантами заряда, т.е. все уровни физического вакуума заполнены квантами одного знака. Такое полевое пространство из зарядов одного знака можно рассматривать как упругую полевую среду, так как заряды находятся в связанном между собой состоянии, т.е. смещение кванта заряда приводит к смещению окружающих его зарядов, представляя отклонение от положения равновесия, которое как возмущение поля может распространяться в полевом пространстве. Кванты заряда всегда движутся (нет материи без движения), т.е. с квантами связано также магнитное поле (поток). Таким образом, квант поля представляет как электрический, так и магнитный квант - электромагнитный осциллятор. Например, Максвелл в разработанной им теории электромагнитного поля сравнивал электродинамический вакуум с жидкостью, условно представляя его состоящим из "молекулярных" (дискретных) связанных электрических зарядов (в то время еще не было терминов"кванты", "осцилляторы поля", а "молекулярность"означала "дискретность"), которые могут смещаться от положения равновесия, создавая ток смещения (вихревое электрическое поле). Токи при этом всегда замкнуты, так как заряды находятся в связанном состоянии. Такого представления было достаточно, чтобы предсказать электромагнитные волны. В дальнейшем, после того, как было установлено, что все электрические заряды (токи) дискретны, соответственно, и свойства электромагнитных волн также стали дискретными из-за дискретности токов смещения связанных электрических зарядов, которые при распространении волн совершают колебания как гармонические осцилляторы. Дискретность электромагнитных волн обнаружена экспериментально, что подтверждает правильность теории электромагнитного поля Максвелла о"молекулярной" (корпускулярной) природе электродинамического вакуума, т.е. о квантовой (дискретной) природе поля. Поэтому теорию электромагнитного поля Максвелла с современной точки зрения можно считать квантовой, а введенный им электрический ток смещения - квантовым током, т.е. любой ток всегда связан сдвижением (смещением) квантов поля - элементарных электрических зарядов. Надо признать, что Максвелл предсказал не только электромагнитные волны, но и предвидел квантовую ("молекулярную") природу электродинамического вакуума, т.е. заложил основы материалистической квантовой теории поля. Максвелл в своей теории на много лет опередил время. Представить, что вакуум на самом деле является диэлектриком, где связанные заряды представляют поле осцилляторов и, соответственно, все частицы могут быть только в виде волн, это очень необычно, даже сейчас, когда экспериментально установлено, что все частицы обладают волновыми свойствами, т.е. являются волнами квантового поля.
После того, как выяснилось, что все частицы представляют возбужденные (волновые) состояния поля, стало понятно, почему частицы могут беспрепятственно двигаться (распространяться) в полевом пространстве (физическом вакууме). Т.е. все частицы, аналогично фотону, перемещаются в полевом пространстве как волновые образования.
«... путь перехода от классического к квантовому описанию электромагнитного поля лежит в классическом разложении поля на осцилляторы.»5
«Представим, что все пространство заполнено связанными между собой гармоническими осцилляторами. Каждый из них характеризуется координатами точки, в которой он находится. Получившееся поле осцилляторов, очевидно, имеет бесконечно большое число степеней свободы. В рассматриваемой системе могут распространяться волны колебаний этих связанных между собой осцилляторов. При переходе к квантовой механике классические величины, характеризующие каждый осциллятор (например, отклонение от положения равновесия), становятся операторами, а с каждой волной сопоставляется (согласно корпускулярно-волновому дуализму) частица, обладающая такими же, как и волна, энергией и импульсом (а следовательно, и массой). Эту частицу нельзя отождествлять ни с одним из осцилляторов поля в отдельности: она представляет собой результат процесса, захватывающего бесконечно большое число осцилляторов, и описывает некое возбуждение поля. Таким образом, изучение поля можно свести к рассмотрению квантованных волн (или частиц) возбуждений, их рождения и поглощения.» 6
Т.е. с точки зрения квантовой теории частицы – это квантованные волновые образования, возбужденные состояния квантового поля. Кванты поля (заряда) находятся в связанном состоянии, представляя электромагнитные осцилляторы поля. Таким образом, поле, находящееся в возбужденном состоянии, представляет наблюдаемые элементарные частицы, а невозбужденное поле осцилляторов является ненаблюдаемым вакуумным состоянием квантового поля, несмотря на бесконечное число квантов заряда, которыми заполнен физический вакуум.
Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию для смещения кванта поля (заряда), то произойдет его возбуждение - в вакууме образуются две разноименные области возмущения поля: (вакуум + квант) и (вакуум - квант), где поток электрического смещения между разноименными областями равен элементарному электрическому заряду. Таким образом, в вакууме возникает наблюдаемый поток электрического смещения поля в один квант заряда - квантовое возмущение поля, т.е. скалярное квантовое поле переходит в векторное - возникает квантовый поток напряженности.
«Скалярное поле - поле физическое, которое описывается функцией, в каждой точке пространства не изменяющейся при повороте системы координат.»7
«Колебания таких полей переносят энергию и импульс с одного места пространства в другое, а квантовая механика утверждает, что эти волны собираются в пакеты, или кванты, которые наблюдаются в лаборатории как элементарные частицы. ... Слово "скаляр" означает, что эти поля нечувствительны к направлению в пространстве, в отличие от электрических, магнитных и других полей Стандартной Модели. Это открывает возможность таким полям заполнять все пространство, не противореча одному из наиболее доказанных принципов физики, согласно которому все пространственные направления одинаково хороши.»8
Энергия поля - это энергия напряженности поля, т.е.там, где есть поток напряженности, энергия поля не равна нулю. Энергия поля, распространяющаяся в виде вихревых потоков напряженности, представляет электромагнитные волны. Так как частицы - это возбужденные состояния поля, можно предположить, что любая форма энергии (массы) в конечном итоге является энергией поля.
Масса элементарной частицы определяется энергией возбужденного состояния поля, которое с ней связано. Невозбужденное (вакуумное) состояние поля представляет не овеществленную форму материи.
Квантовая (дискретная) природа электродинамического вакуума как квантового поля проявляется в дискретности электромагнитных волн.
Физический вакуум (электродинамический вакуум) – это скалярное квантовое электромагнитное поле (электродинамическое поле), т.е. там, где нет возмущений, поле находится в нулевом вакуумном (скалярном) состоянии. При смещении квантов поля возникает электрический поток напряженности поля. Магнитная индукция возникает как релятивистский эффект в результате движения электрического потока (заряда). Гравитация - результат вакуумных флуктуаций поля, флуктуационные колебания подталкивают тела к сближению.
«Таким образом, появление магнитного поля токов есть чисто релятивистский эффект и никакой новой физической субстанции (например, в виде магнитных зарядов) появляться не должно, что и подтверждается экспериментально.»9
СТРУКТУРА ПОЛЯ ФОТОНА
Фотон представляет дискретное поперечное электрическое смещение поля в один квант заряда, образующее две разноименные области возмущения поля. Рассмотрим более детально полевую структуру фотона и протекающие там электродинамические процессы с учетом квантовой природы поля.
На рисунке 1 условно изображено дискретное поперечное электрическое возмущение (смещение) квантового поля. Знаком (+) обозначена положительная область возмущения, знаком (-) - отрицательная. Между разноименными областями существует электрическое смещение, которое представляет электрический поток величиной в квант количества электричества. Движение (изменение) электрического потока всегда связано с током смещения. Стрелки "/\" и "\/" указывают направление тока электрического смещения квантов поля (квантов заряда). Вначале, образуя возмущение (напряженность), ток электрического смещения поля течет в одну сторону, в конце возмущения - в обратную, т.е. в результате смещения возникает область с избытком в один квант и область с недостатком - дырка, которые, распространяясь как поперечное возмущение, представляют вихревое (нестационарное) электрическое поле. Поперечное возмущение, проходя участки поля в виде расходящихся и затем сходящихся разноименных областей как поперечное противоположное движение зарядов с разными знаками, совершаемое за период в половину длины волны фотона, образует в пространстве движущийся дискретный круговой ток электрического смещения Iсм = 2ev, где e - квант электрического заряда, v - частота электромагнитной волны. Надо заметить, что отрицательная область возмущения создает обратное направление тока, поэтому ток замкнут по кругу (аналогия с током проводимости, где отрицательно заряженные электроны движутся в одну сторону, но принято считать, что ток течет в обратном направлении). Иногда возмущение удобнее представлять как состоящее из двух разноименных токов смещения - положительного и отрицательного. Движущийся круговой ток смещения для покоящегося наблюдателя является переменным, так как в начале распространяющегося возмущения он течет в одном направлении, в конце - в обратном.
Движение фотона представляет волну де Бройля, т.е. движение поперечного возмущения поля, согласно принципу Гюйгенса, сопровождается возникновением вторичных электромагнитных волн (отражающих поперечную полевую структуру фотона), которые, интерферируя в окружающем пространстве, гасят друг друга, не излучаясь. Таким образом, движущееся квантовое возмущение поля окружено вторичными (парциальными) волнами, которые не могут излучаться, так как в процессе распространения интерферируют между собой, гася друг друга, т.е. фотон представляет устойчивое возбужденное состояние поля (квантованное волновое образование) - стабильную элементарную частицу.
«...фотон , как и любая другая частица, характеризуется энергией, массой и импульсом.»10
« Свет , испускаемый обычными источниками, представляет собой набор множества плоскополяризованных цугов волн, ...»11

Список литературы

ЛИТЕРАТУРА
1. Общий курс физики. Электричество. Д.В.Сивухин. 1996. Т.3. Ч.2.
2. Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. 5-е изд., перераб. и доп. - М.: Наука, 35 л.
3. Курс физики. Т.И.Трофимова. 1998.
4. Физика. О.Ф.Кабардин. 1991.
5. Волновые процессы. И.Е.Иродов. 1999.
6. Справочник по физике. Б.М.Яворский, А.А.Детлаф. 1996.
7. Квантовая механика. Л.Д.Ландау, Е.М.Лифшиц. 1972.
8. Основы физики. Л.А.Грибов, Н.И.Прокофьев. 1995.
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00465
© Рефератбанк, 2002 - 2024