Вход

Стратегия ценообразования на олигополистических

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 307224
Дата создания 08 июля 2013
Страниц 15
Мы сможем обработать ваш заказ (!) 22 ноября в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
910руб.
КУПИТЬ

Содержание

Введение
Основная часть
Модель Бертрана
Модель Эджуорта
Заключение
Список используемой литературы:

Введение

Стратегия ценообразования на олигополистических

Фрагмент работы для ознакомления

3. Возможности входа в отрасль (на рынок) варьируют в широких пределах, от полностью блокированного входа (как в модели монополии) до совершенно свободного (как в модели совершенной конкуренции). Возможность регулировать вход, равно как и необходимость учитывать при принятии решений возможную реакцию соперников, формирует стратегическое поведение олигополистов.
Традиционно экономисты принимают не цену, а количество (величину выпуска) в качестве управляемой (или стратегической) переменной предприятия. Действительно, при совершенной конкуренции, когда предприятия являются ценополучателями, величина выпуска, как мы видим, есть единственная переменная, управляемая самим предприятием. Напротив, при несовершенной конкуренции предприятие, как мы помним, может выбрать в качестве стратегической переменной либо выпуск, либо цену (но не то и другое одновременно). Едва ли не первым с такой критикой и предложением принять в качестве стратегической переменной цену выступил в 1883г. французский математик Ж. Бертран
Модель Бертрана
Дуополисты Бертрана исходят из предположения о независимости цен, устанавливаемых друг другом, от их собственных ценовых решений. Иначе говоря, не выпуск соперника, а назначенная им цена является для дуополиста параметром, константой.
Рисунок 1. Изопрофиты и кривые реагирования дуополистов Бертрана
В связи с изменением управляемой переменной (с выпуска на цену) и изопрофиты, и кривые реагирования строятся в двухмерном пространстве цен, а не выпусков. Изменяется и их экономический смысл. Изопрофиты и кривые реагирования дуополистов Бертрана представлены на рис.1. Здесь изопрофита, или кривая равной прибыли, дуополиста 1 - это множество точек в пространстве цен (P1, P2), соответствующих комбинациям цен P1 и P2, обеспечивающим этому дуополисту одну и ту же сумму прибыли. Соответственно изопрофита дуополиста 2 - это множество точек в том же пространстве цен, соответствующих комбинациям (соотношениям) цен Р1 и P2 , обеспечивающим одну и ту же прибыль дуополисту 2. Семейства таких кривых равной прибыли, или изопрофит дуополистов 1 (11, 21, 31, 41) и 2 (12, 22, 32, 42), представлены на рис.1. Изопрофиты дуополиста 1 выпуклы к оси его цены (P1), а дуополиста 2 к оси его цены (P2).
Такая конфигурация изопрофит означает, что дуополист 1 должен будет снизить цену до определенного уровня, например с P'1 до P''1, чтобы сохранить свою прибыль неизменной (остаться на изопрофите 21) в случае снижения дуополистом 2 своей цены с P'2 до P''2. Однако, если и после этого дуополист 2 продолжит снижать свою цену, дуополист 1 не сможет сохранить свою прибыль неизменной. Очевидно, что при сколь либо более низкой, чем P''2, цене дуополиста 2 дуополист 1 должен будет перейти на более низкую, чем 21, изопрофиту, а это означает, что величина его прибыли уменьшится. Чем ближе к оси цены лежит изопрофита соответствующего дуополиста, тем более низкий уровень равной прибыли она отображает.
Таким образом, при любом изменении цены дуополиста 2 существует единственная цена дуополиста 1, максимизирующая его прибыль. Эта прибыльмаксимизирующая цена определяется самой низкой точкой наиболее высоко лежащей изопрофиты дуополиста 1. Такие точки (e1 ≈ q4 на рис.1, а) по мере перехода к более высоким изопрофитам смещаются вправо. Это значит, что, увеличивая свою прибыль, дуополист 1 делает это за счет привлечения покупателей дуополиста 2, повышающего свою цену, даже если при этом дуополист 1 тоже увеличивает цену. Соединив наиболее низко лежащие точки всех последовательно расположенных изопрофит, мы получим кривую реагирования дуополиста 1 на изменения цен дуополистом 2 ≈ R1(P2) на рис.1, а. Абсциссы точек этой кривой представляют собой прибыльмаксимизирующие цены дуополиста 1 при заданных ординатами этих точек ценах дуополиста 2. Соответственно линия R2(P1) на рис1., б представляет кривую реагирования дуополиста 2 на множестве его изопрофит (12, 22, 32, 42)
Теперь, зная кривые реагирования дуополистов Бертрана, мы можем определить равновесие Бертрана как иной (по сравнению с равновесием Курно) частный случай равновесия Нэша, когда стратегия каждого предприятия заключается не в выборе им своего объема выпуска, как в случае равновесия Курно, а в выборе им уровня цены, по которой он намерен реализовать свой выпуск. Графически равновесие Бертрана - Нэша, как и равновесие Курно - Нэша, определяется пересечением кривых реагирования обоих дуополистов, но не в пространстве выпусков, а в пространстве цен.
Рисунок 2. Равновесие дуополии Бертрана
Равновесие Бертрана - Нэша представлено точкой В - N на рис.2. Обе кривые реагирования Бертрана восходящие. Это значит, что цены дуополистов Бертрана имеют выраженную тенденцию к сближению.
Равновесие Бертрана достигается, если предположения дуополистов о ценовом поведении друг друга сбываются. Если дуополист 1 полагает, что его соперник установит цену P12 (рис.2), он в целях максимизации прибыли выберет, согласно своей кривой реагирования, цену P11. Но в таком случае дуополист 2 может на самом деле установить на свою продукцию цену P22, исходя из своей кривой реагирования. Если предположить, что кривая реагирования дуополиста 1 круче, чем соответствующая кривая дуополиста 2, то тогда этот итеративный процесс приведет дуополистов к равновесию Бертрана - Нэша (т. е. в точку В - N на рис.2), где их кривые реагирования пересекутся. Поскольку продукция обоих дуополистов однородна, каждый из них предпочтет в состоянии равновесия один и тот же уровень ее цены. В противном случае дуополист, назначивший более низкую цену, захватит весь рынок. Поэтому равновесие Бертрана - Нэша характеризуется единой ценой, принадлежащей в двухмерном пространстве цен лучу, исходящему из начала координат под углом 45.
Кроме того, в состоянии равновесия Бертрана - Нэша равновесная цена окажется равной предельным затратам каждого из дуополистов. В противном случае дуополисты, руководствуясь каждый стремлением овладеть всем рынком, будут снижать свои цены, а это их стремление может быть парализовано, лишь когда они уравняют свои цены не только между собой, но и с предельными затратами. Естественно, что в этом случае общая отраслевая прибыль окажется нулевой. Таким образом, несмотря на исключительную немногочисленность продавцов (в дуополии их лишь двое), модель Бертрана предсказывает, по сути дела, совершенно конкурентное равновесие отрасли, имеющей строение дуополии.
Модель Эджуорта
Ф. Эджуорт предложил модель ценовой дуополии с ограничением на величину производственной мощности дуополистов. На рис.3 это ограничение представлено абсциссой вертикально восходящего сегмента кривой МС (затраты на производство дополнительной - сверх ограниченного масштаба мощности - единицы продукции бесконечно велики) qk. Как видно из рис. 3, мощности каждого дуополиста ограничены половиной рыночного спроса при цене, равной предельным затратам, qk = Q(P  MC)/2 . Поэтому, если каждый из них установит начальную цену равной предельным затратам (P1 = P2 = МС), их совместный выпуск как раз и покроет совокупный рыночный спрос, Q(P = МС).
Рисунок 3. Дуополия Эджуорта
Если теперь дуополист 1 несколько повысит свою цену, тогда как дуополист 2 сохранит цену P2 = МС, все покупатели захотят перейти к нему вследствие более низкой цены. Однако и в этом отличие модели Эджуорта от модели Бертрана, он не сможет покрыть более половины рыночного спроса, поскольку именно такова его производственная мощность. Разочарованные неспособностью дуополиста 2 удовлетворить их спрос по относительно более низким ценам покупатели вынуждены будут обратиться к дуополисту 1. Столкнувшись с остаточным спросом (Q(P  МС) - qk), последний сможет максимизировать свою прибыль, действуя как монополист в отношении этого остаточного спроса. Его предельные затраты уравниваются с предельной выручкой в точке А, что предполагает установлением им прибыльмаксимизирующей цены PJ , при которой выпуск составит q1 - Q(P = MC)/4.
В ответ на это дуополист 2 повысит свою цену до уровня чуть ниже P1, цены дуополиста 1, с тем чтобы привлечь к себе его покупателей. Однако из-за ограниченности своей производственной мощности дуополист 2 сможет покрыть спрос лишь в объеме Q1 - q1 = 2/3Q1 = Q1(P = МС)/2. Продавая по чуть более низкой, чем у дуополиста 1, цене вдвое больше продукции, дуополист 2 получит, вероятно, и вдвое большую прибыль. Тогда дуополист 1 в свою очередь снизит цену до уровня чуть ниже, чем цена дуополиста 2. Словом, они попытаются опередить друг друга в снижении цен. Попытки заработать на снижении цены будут продолжаться, пока она не достигнет уровня
P = MC + (P1 - MC)(q1/qk).
Дуополисты будут рассуждать примерно так. Если я снижу свою цену до Р, что чуть ниже цены соперника, я смогу продать максимально возможный для меня объем выпуска, qk. С другой стороны, если я увеличу свою цену до P1, я смогу продать лишь q1 единиц продукции. При какой цене Р моя прибыль окажется точно такой же, как и при цене P1?

Список литературы

Список используемой литературы:
1.Вечканов Г., Вечканова Г., Микроэкономика - СПб.: Питер. 2003.- 368 с.
2.Гальперин В.М., Игнатьев С.М., Моргунов В.И. Микроэкономика. -СПб: СПбУЭФ, 1996г.
3.Ивашковский С.Н. Микроэкономика. -М.: Дело, 1998
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.01263
© Рефератбанк, 2002 - 2024