Вход

Совершенствование мероприятий по охране труда на буровых установках по добыче газа, газового конденсата нефти.

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 306136
Дата создания 08 июля 2013
Страниц 114
Мы сможем обработать ваш заказ (!) 26 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
4 610руб.
КУПИТЬ

Содержание

УСОВЕРШЕНСТВОВАНИЕ МЕРОПРИЯТИЙ ПО ОХРАНЕ ТРУДА НА БУРОВЫХ УСТАНОВКАХ ПО ДОБЫЧЕ ГАЗА, ГАЗОВОГО КОНДЕНСАТА И НЕФТИ

СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ОПАСНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПРИ БУРЕНИИ
1.1. Приготовление, очистка и обработка промывочного раствора
1.2. Бурение скважин
1.3. Спуско-подъемные операции
1.4. Крепление скважин
1.5. Аварийные работы
ЦЕЛЬ И ЗАДАЧИ РАБОТЫ
2. УСТРАНЕНИЕ ВРЕДНЫХ ПРОИЗВОДСТВЕННЫХ ФАКТОРОВ
2.1. Освещение
2.2 Основные задачи производственной санитарии и гигиены труда
2.3. Метеорологические условия и их нормирование в производственных помещениях
2.4. Производственные пыли, пары и газы
2. 5. Системы вентиляции и кондиционирования воздуха
2.5. Инженерные основы техники безопасности.
3. ОХРАНА ТРУДА ПРИ ПРОВЕЕНИИ РАБОТ ПОВЫШЕННОЙ ОПАСНОСТИ
3. 1. Техника безопасности при электро- и газосварочных работах
4.2.Промышленные работы (ПР) и безопасность труда
5. РАЗРАБОТКА СРЕДСТВ СНИЖЕНИЯ ШУМА НА БУРИЛЬНЫХ УЧАСТАХ ПРИ ДЕМПФИРОВАНИИ ВОЗДУХОВОДОВ ВЕНТСИСТЕМ
5.1. Обзор методов шумоглушения
5.2. Разработка прикладной методики изготовления демпфирующих
5.3 Методический подход к разработке демпфирующей
5.4.Определение толщины демпфирующего покрытия при ограничении его относительного веса
5.6. Методический подход к расчету эффективности вибродемпфирующего покрытия
5.7.Анализ методики приготовления и нанесения типовых вибропоглощающих мастик и конструкций
5.7.Вибродемпфирующая мастика - прототип
5.8. Нанесение вибродемпфирующей мастики
5.8. Разработка демпфирующего покрытия из промышленных отходов
5.9. Методика измерения декрементов колебаний, определения
5.9. Оценка достоверности результатов при статистической
6. СОЦИАЛЬНО – ЭКОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМ НЕФТЕДОБЫЧИ И ЕЁ РЕАЛИЗАЦИИ
5.1.Социальн - и технико-экономические аспекты улучшения
6.2. Оценка экологического аспекта
ЗАКЛЮЧЕНИЕ. ОБОБЩЕНИЕ, ВЫВОДЫ
СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

Введение

Совершенствование мероприятий по охране труда на буровых установках по добыче газа, газового конденсата нефти.

Фрагмент работы для ознакомления

Главную часть нефти составляют углеводороды различные по своему составу, строению и свойствам, которые могут находиться в газообразном, жидком и твердом состоянии. В зависимости от строения молекул они подразделяются на три класса - парафиновые, нафтеновые и ароматические. Но значительную часть нефти составляют углеводороды смешанного строения, содержащие структурные элементы всех трех упомянутых классов. Строение молекул определяет их химические и физические свойства. Парафиновые углеводороды, или как их еще называют, метановые УВ (алкановые, или алканы). Сюда относят метан СН4, этан С3Н6, пропан, бутан и изобутан.
Для углерода характерна способность образовывать цепочки, в которых его атомы соединены последовательно друг с другом. Остальными связями к углероду присоединены атомы водорода. Количество атомов углерода в молекулах парафиновых УВ превышает количество атомов водорода в 2 раза, с некоторым постоянным во всех молекулах избытком, равным 2. Иначе говоря, общая формула углеводородов этого класса CnH2n+1. Парафиновые углеводороды химически наиболее устойчивы и относятся к предельным УВ. В зависимости от количества атомов углерода в молекуле углеводороды могут принимать одно из трех агрегатных состояний. Например, если в молекуле от одного до четырех атомов углерода (СН4 - С4Ню), то УВ представляют собой газ, от 5 до 16 (СэН^ - С^ЬГ^) - это жидкие УВ, а если больше 16 (СпНзб и т.д.) – твердые /19/.
Таким образом, парафиновые углеводороды в нефти могут быть представлены газами, жидкостями и твердыми кристаллическими веществами. Они по-разному влияют на свойства нефти: газы понижают вязкость и повышают упругость паров; жидкие парафины хорошо растворяются в нефти только при повышенных температурах, образуя гомогенный раствор; твердые парафины также хорошо растворяются в нефти образуя истинные молекулярные растворы. Парафиновые УВ (за исключением церезинов) легко кристаллизуются в виде пластинок и пластинчатых лент.
Нафтеновые (циклановае, или алициклические) УВ имеют циклическое строение (С/СпНзп), а именно состоят из нескольких групп – CH2 -, соединенных между собой в кольчатую систему. В нефти содержатся преимущественно нафтены, состоящие из пяти или шести групп СН2. Все связи углерода и водорода здесь насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами. По сравнению с парафинами, нафтены имеют более высокую плотность и меньшую упругость паров и имеют лучшую растворяющую способность.
Ароматические УВ (арены) представлены формулой СnНn, наиболее бедны водородом. Молекула имеет вид кольца с ненасыщенными связями углерода. Простейшим представителем данного класса углеводородов является бензол С6Н6, состоящий из шести групп СН.
Для ароматических УВ характерны большая растворяемость, более высокая плотность и температура кипения.
Асфальто-смолистая часть нефтей представляет собой вещество темного окраса, которое частично растворяется в бензине. Растворившееся часть -асфальтены. Они обладают способностью набухать в растворителях, а затем переходить в раствор. Растворимость асфальтенов в смолисто-углеродных системах возрастает с уменьшением концентрации легких УВ и увеличением концентрации ароматических углеводородов. Смола не растворяется в бензине и являются полярными веществами с относительной молекулярной массой 500-1200. В них содержатся основное количество кислородных, сернистых и азотистых соединений нефти. Асфальтосмолистые вещества и другие полярные компоненты являются поверхностно-активными соединениями нефти и природными стабилизаторами водонефтяных эмульсий.
Порфиритами называют особые азотистые соединения органического происхождения. Предполагают, что они образовались из гемоглобина животных и хлорофилла растений. Эти соединения разрушаются при температуре 200-250°С.
Сера широко распространена в нефтях и углеводородном газе и содержится как в свободном состоянии, так и в виде соединений (сероводород, меркаптаны).
Зольная часть представляет собой остаток, образующийся при сжигании нефти. Это различные минеральные соединения, чаще всего железо, никель, ванадий, иногда соли натрия.
Свойства нефти определяют направление ее переработки и влияют на продукты, получаемых из нефти, поэтому существуют различные виды классификации, которые отражают химическую природу нефти и определяют возможные направления переработки /34/.
Например, в основу классификации, отражающей химический состав, положено преимущественное содержание в нефти какого-либо одного или нескольких классов углеводородов. Различают нафтеновые, парафиновые, парафино-нафтеновые, парафино-нафтено-ароматические, нафтено-ароматические, ароматические. Так, в парафиновых нефтях все фракции содержат значительное количество алканов; в парафино-нафтено-ароматических углеводороды всех трех классов содержатся примерно в равных количествах; нафтено-ароматические нефти характеризуются преимущественным содержанием циклоалканов и аренов, особенно в тяжелых фракциях. Также используется классификация по содержанию асфальтенов и смол. В технологической классификации нефти подразделяют на классы - по содержанию серы; типы - по выходу фракций при определенных температурах; группы - по потенциальному содержанию базовых масел; виды - по содержанию твердых алканов (папафинов). При выходе из нефтяного пласта нефть содержит взвешенные частицы горных пород, воду, растворенные в ней соли и газы. Нефть, получаемую непосредственно из скважин называют сырой нефтью, которая иногда сразу транспортируется в ближайшие центры нефтепереработки. Но в большинстве случаев добываемая нефть проходит промысловую подготовку, так как она может быть предназначена для экспорта или для транспортирования в отдаленные от мест добычи нефтеперерабатывающие заводы.
Перечисленные выше примеси вызывают коррозию оборудования и серьезные затруднения при транспортировании и переработки нефтяного сырья. Именно поэтому перед транспортированием сырая нефть подготавливается: из нее удаляется вода, большое количество механических примесей, солей и выпавших твердых углеводородов. Также следует выделить из нефти газ и наиболее летучие ее компоненты. Если этого не сделать, то при хранении нефти даже за то время, которое пройдет, пока она не попадет на нефтеперерабатывающий завод, газ и наиболее легкие углеводороды будут утеряны. А между тем газ и летучие жидкие УВ являются ценными продуктами. Кроме того, при трубопроводной транспортировке нефтей из них необходимо удалять все легкие газы. В противном случае на возвышенных участках трассы возможно образование газовых мешков / 24/.
Перечислим важнейшие показатели качества: фракционный состав, плотность, содержание воды, хлористых солей, механических примесей и серы. Также определяют технологические показатели нефти. К ним можно отнести: давление насыщенных паров, вязкость, содержание парафинов, температура застывание и вспышки, содержание асфальтенов и смол. (Иногда определяют кислотность, молекулярную массу, объемную долю газа, массовую долю тяжелых металлов). Некоторые показатели качества нефти могут определяться согласно договоренности между поставщиком и покупателем. Рассмотрим значения этих показателей для характеристики нефти и получаемых из нее нефтепродуктов.
Плотность является одним из наиболее общих показателей, характеризующий свойства нефти и нефтепродуктов, измерение которого предусмотрено стандартами различных стран. По плотности можно ориентировочно судить об углеводородном составе различной нефти и нефтепродуктов, поскольку ее значение для углеводородов различных групп различна. Например, более высокая плотность указывает на большее содержание ароматических углеводородов, а более низкая - на большее содержание парафиновых УВ. Углеводороды нафтеновой группы занимают промежуточное положение. Таким образом, величина плотности до известной степени будет характеризовать не только химический состав и происхождение продукта, но и его качество. При характеристики плотности отдельных фракций нефти следует прежде всего отметить возрастание плотности с увеличением температуры кипения. Однако это положение, справедливое для большей части случаев, имеет исключения.
Важнейшим показателем качества нефти является фракционный состав. Фракционный состав определяется при лабораторной перегонке с использованием метода постепенного испарения, в процессе которой при постепенно повышающейся температуре из нефти отгоняют части - фракции, отличающиеся друг от друга пределами выкипания. Каждая из фракций характеризуется температурами начала и конца кипения.
Промышленная перегонка нефти основывается на схемах с так называемым однократным испарением и дальнейшей ректификацией. Фракции, выкипающие до 350°С, отбирают при давлении несколько превышающим атмосферное, называют светлыми дистиллятами (фракциями). Названия фракциям присваиваются в зависимости от направления их дальнейшего использования. В основном, при атмосферной перегонке получают следующие светлые дистилляты: 140°С (начало кипения) -бензиновая фракция, 140-180°С - лигроиновая фракция (тяжелая нафта), 140-220°С (180-240°С ) - керосиновая фракция, 180-350°С (220-350°С, 240-350°С) - дизельная фракция (легкий или атмосферный газойль, соляровый дистиллят). Фракция, выкипающая выше 350°С является остатком после отбора светлых дистиллятов и называется мазутом. Мазут разгоняют под вакуумом и в зависимости от дальнейшего направления переработки нефти получают следующие фракции: для получения топлив - 350-500°С вакуумный газойль (дистиллят), >500°С вакуумный остаток (гудрон); для получения масел - 300-400°С (350-420°С) легкая масленная фракция (трансформаторный дистиллят), 400-45 0°С (420-490°С) средняя масленная фракция (машинный дистиллят), 450-490°С тяжелая масленная фракция (цилиндровый дистиллят), >490°С гудрон. Мазут и полученные из него фракции - темные. Таким образом, фракционирование - это разделение сложной смеси компонентов на более простые смеси или отдельные составляющие. Продукты, получаемые как при первичной, так и при вторичной переработки нефти, относят к светлым, если они выкипают до 350°С, и к темным, если пределы выкипания 350°С и выше /17/.
Нефти различных месторождений заметно отличаются по фракционному составу, содержанию светлых и темных фракций. В технических условиях на нефть и нефтепродукты нормируются:
• температура начала кипения;
• температура, при которой отгоняется 10,50,90 и 97.5% от загрузки, а также остаток в процентах;
• иногда лимитируется температура конца кипения.
При добыче и переработке нефть дважды смешивается с водой: при выходе с большой скоростью из скважины вместе с сопутствующей ей пластовой водой и в процессе обессоливания, т.е. промывки пресной водой для удаления хлористых солей. В нефти и нефтепродуктах вода может содержаться в виде простой взвеси, тогда она легко отстаивается при хранении, либо в виде стойкой эмульсии, тогда прибегают к особым приемам обезвоживания нефти. Образование устойчивых нефтяных эмульсий приводит к большим финансовым потерям. При небольшом содержании пластовой воды в нефти удорожается транспортировка ее по трубопроводам, потому что увеличивается вязкость нефти, образующей с водой эмульсию. После отделения воды от нефти в отстойниках и резервуарах часть нефти сбрасывается вместе с водой в виде эмульсии и загрязняет сточные воды. Часть эмульсии улавливается ловушками, собирается и накапливается в земляных амбарах и нефтяных прудах, где из эмульсии испаряются легкие фракции и она загрязняется механическими примесями. Такие нефти получили название «амбарные нефти». Они высокообводненные и смолистые, с большим содержанием механических примесей, трудно обезвоживаются.
Содержание воды в нефти является самой весомой поправкой при вычислении массы нетто нефти по массе брутто. Этот показатель качества, наряду с механическими примесями и хлористыми солями, входит в уравнение для определения массы балласта. Присутствуя в нефти, особенно с растворенными в ней хлористыми солями, вода осложняет ее переработку, вызывая коррозию аппаратуры. Имеющаяся в карбюраторном и дизельном топливе, вода снижает их теплотворную способность, засоряет и вызывает закупорку распыляющих форсунок. При уменьшении температуры кристаллики льда засоряют фильтры, что может служить причиной аварий при эксплуатации авиационных двигателей / 27/.
Содержание воды в масле усиливает ее склонность к окислению, ускоряет процесс коррозии металлических деталей, соприкасающихся с маслом. Следовательно, вода оказывает негативное влияние как на процесс переработки нефти, так и на эксплуатационные свойства нефтепродуктов и количество ее должно строго нормироваться.
Присутствие мехпримесей объясняется условиями залегания нефти и способами ее добычи. Механические примеси нефти состоят из взвешенных в ней высокодисперсных частиц песка, глины и других твердых пород, которые, адсорбируясь на поверхности глобул воды, способствуют стабилизации нефтяной эмульсии. При перегонке нефти примеси могут частично оседать на стенках труб, аппаратуры и трубчатых печей, что приводит к ускорению процесса износа аппаратуры.
В отстойниках, резервуарах и трубах при подогреве нефти часть высокодисперсных механических примесей коагулирует, выпадает на дно и отлагается на стенках, образуя слой грязи и твердого осадка. При этом уменьшается производительность аппаратов, а при отложении осадка на стенках труб уменьшается их теплопроводность. В ГОСТ 6370-83 приводятся следующие оценки достоверности результатов определения содержания механических примесей при доверительной вероятности 95%.Массовая доля механических примесей до 0.005% включительно оценивается как их отсутствие.
ГОСТ 9965-76 устанавливает массовую долю механических примесей в нефти, которая может быть не более 0.05%.
Сера и ее соединения являются постоянными составляющими частями сырой нефти. По химической природе - это соединения сульфидов, гомологов тиофана и тиофена. Кроме указанных соединений, в нефти встречаются сероводород, меркаптаны и дисульфиды. Меркаптаны или тиоспирты - легколетучие жидкости с чрезвычайно отвратительным запахом; сульфиды или тиоэфиры - нейтральные вещества, нерастворяющиеся в воде, но растворяющиеся в нефтепродуктах; дисульфиды или полисульфиды - тяжелые жидкости с неприятным запахом, легко растворяющиеся в нефтепродуктах, и очень мало в воде; тиофен - жидкость, не растворяющаяся в воде. Соединения серы в нефти, как правило, являются вредной примесью. Они токсичны, имеют неприятный запах, способствуют отложению смол, в соединениях с водой вызывают интенсивную коррозию металла. Особенно в этом отношении опасны сероводород и меркаптаны. Они обладают высокой коррозийной способностью, разрушают цветные металлы и железо. Поэтому их присутствие в товарной нефти не допустимо. Точность метода определения серы согласно ГОСТ 1437-75 выражается следующими показателями:
сходимость - результаты определения, полученные последовательно одним лаборантом, признаются достоверными (при доверительной вероятности 95%), если расхождение между ними не превышает значений, указанных в таблице №1;
воспроизводимость - результаты анализа, полученные в двух разных лабораториях, признаются достоверными (при доверительной вероятности 95%), если расхождение между ними не превышает значений, указанных в таблице № 3.1.
Таблица № 3.1
Сходимость и воспроизводимость метода определения серы по ГОСТ 1437-75
Массовая доля серы, %
Сходимость, %
Воспроизводимость, %
До 1.0
0.05
0.20
Св. 1.0 до 2.0
0.05
0.25
Св. 2.0 до 3.0
0.10
0.30
Св. 3.0 до 5.0
0.10
0.45
Вязкость является важнейшей физической константой, характеризующей эксплуатационные свойства котельных, дизельных топлив и других нефтепродуктов. Особенно важна эта характеристика для определения качества масленых фракций, получаемых при переработке нефти и качества стандартных смазочных масел. По значению вязкости судят о возможности распыления и перекачивания нефтепродуктов, при транспортировке нефти по трубопроводам, топлив в двигателях и т.д.
Перегонка нефти, содержащей соли, становится невозможной из-за интенсивной коррозии аппаратуры, а также из-за отложения солей в трубах печей и теплообменниках. В результате могут прогореть печные трубы и возникнуть пожар, непрерывно повышаться давление на сырьевых печных насосах вследствие уменьшения диаметра печных труб и, наконец, полностью прекратится подача сырья в печь.
Основным коррозирующим фактором является присутствие хлоридов в нефти. При подогреве нефти до 120 С и выше в присутствии даже следов воды происходит интенсивный гидролиз хлоридов с выделением сильно коррозирующего агента - хлористого водорода НС1. Гидролиз хлоридов идет согласно следующим уравнениям:
MgCl2 + Н2O = MgOHCl + НС1
MgCI2 + 2Н20 = Mg(OH)2 + 2НС1
С повышением температуры скорость гидролиза хлоридов значительно увеличивается. Из содержащихся в нефти хлоридов наиболее легко гидролизируется хлористый магний, за ним следует хлористый кальций и труднее всех гидролизируется хлористый натрий. При перегонке сернистой нефти сероводород реагирует с железом и образует не растворяемый в воде сульфид железа, который в виде тонкой пленки покрывает стенки аппаратов и, таким образов, защищает аппаратуру от дальнейшего воздействия коррозии. Но выделившийся хлористый водород разлагает эту защитную пленку, при этом выделяются новые порции сероводорода и образуется нерастворимое в воде хлористое железо. В результате обнажается поверхность металла и протекает интенсивная сопряженная коррозия сероводородом и хлористым водородом. Наличие значительного количества минеральных солей в мазутах, которые представляют собой остаток при перегонке нефти и используются в качестве котельного топлива приводит к отложению солей в топках, на наружных стенках нагревательных труб. Это приводит к снижению теплоотдачи и, следовательно, к снижению коэффициента полезного действия печи.
Таким образом, переработка такой нефти может осуществляться только после обязательного обессоливания и обезвоживания. ГОСТ 21534 устанавливает два метода определения хлористых солей в нефти: титрованием водного экстракта (метод А) и неводным поцентриометрическим титрованием (метод Б). Точностные значения для методов представлены в таблицах №3.2 и № 3.3.
Таблица № 3.2
Значения точности определения хлористых солей по методу А.
Массовая концентрация хлористых солей, мг/дм3
Сходимость, мг/дм3
10
1.5
10 до 50
3.0
50 до 200
6.0
200 до 1000
25.0
1000
4% от среднего значения
Таблица № 3.3
Значения точности определения хлористых солей по методу Б
Массовая концентрация хлористых солей, мг/дм3
Сходимость, мг/дм3
До 50
3
Св. 50 до 100
7
Св. 100 до 200
12
Св. 200 до 500
27
Св. 500 до 1000
50
Св. 1000 до 2000
100
Св.2000
6% от значения меньшего результат
По ГОСТу 9965-76 концентрация хлористых солей должна составлять 100,300 или 900 мг/дм3, в зависимости от степени подготовки нефти.
Способность молекул жидкости выходить через свободную поверхность наружу, образуя пар, называют испаряемостью. Над поверхностью каждой жидкости вследствие испарения находится пар, давление которого может возрастать до определенного предела, зависящего от температуры и называемого давлением насыщенного пара. При этом давление пара и жидкости будет одинаковым, пар и жидкость оказываются в равновесии и пар становится насыщенным. При этом число молекул, переходящих из жидкости в пар равно числу молекул, совершающий обратный переход. Давление насыщенных паров с повышением температуры растет. Образование насыщенных паров приводит к тому, что давление на свободной поверхности не может быть ниже давления насыщенных паров. Для нефти и нефтепродуктов и других сложных многокомпонентных систем давление насыщенного пара при данной температуре является сложной функцией состава и зависит от соотношения объемов пространств, в которых находится пар и жидкость.
Давление насыщенных паров характеризует интенсивность испарения, пусковые качества моторных топлив и склонность их к образованию паровых пробок / 29/.

Список литературы

"СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ
1. Акульшин А.И., Бойко В.С., Зарубин Ю.А. Эксплуатация нефтяных и газовых скважин – Москва: Недра, 1989.
2. Бойко В.С. Довідник з нафтогазової справи – Львів 1996.
3. Гвоздев Б.П. Эксплуатация газовых залежей – Москва: Недра, 1988.
4. Коротаєв Ю.П., Шировський А.І. Добуток, транспорт та підземне зберігання газу – Київ, 1997.
5. Щуров В.И. Технология и техника добычи нефти – Москва: Недра, 1983.
6. Безопасность производственных процессов; Справ,/ Под ред. С В. Белова,—М.: Машиностроение, 1985.—448с.
2. Безопасность труда в промышленности: Справ./К. Н. Ткачук, П. Я. Галушко, Р. В. Сабарно и др. — К.: Технiка, 1982.— 231 с.
3. Борьба с шумом на производстве: Справ. / Под ред. Б. Я. Юдина.—М.: Машиностроение, 1985.—399 с.
4.Ванханен В. Д., Суханова Г.А. Техника санитарно-гигие¬нических исследований.— К.: Вища шк.. 1983.—254с.
5.Денисенко Г. Ф. Охрана труда.— М.: Высш. шк., 1985.— 319с.
6.Диментберг Ф. М., Фролов К. В. Вибрация в технике и че¬ловек.— М.: Знание, 1987.— 160 с.
7.Долин П. А. Справочник по технике безопасности.— М.:
Эдергоиздат, 1982.— 799 с,
8.Долин П. А- Основы техники безопасности в электроустанов¬ках,—М.: Энергоиздат, 1984.—448с-
9.Золотннцкий Н. Д., Пчелинцев В. А. Охрана труда в строи¬тельстве.— М.: Высш. шк., 1978.— 407 с.
10.Измеров Н. Ф., Широков В. Г. Методы оценки производ¬ственной среды промышленных предприятий.— М.: Медицина, 1980.—208с.
11.Инженерные решения по охране труда в строительстве/Под ред. Г. Г. Орлова.— М.: Стройиздат, 1985.— 278 с.
12.Куценко Г. И., Жашкова И. А. Основы гигиены. — М.:
Высш. шк., 1980.— 142с.
13. Кодекс законов о труде,—М.; Юрид. лит., 1976.—200с.
14. Лесенко Г. В. Организация безопасности труда па производ¬стве,— К.: Техника, 1977.— 191 с.
15.Луковников А. В. Охрана труда.—М.: Колос, 1984.— 288 с.
16.Манойлос В. Е. Основы электробезопасности.— М.; Л.:
Энергоиздат, 1985.— 384 с.
17. Макушин В. Г. Совершенствование условий труда на про¬мышленных предприятиях.— М.: Экономика, 1981.— 215 с.
18.Метрологическое обеспечение безопасности труда: Справ. / Под ред. И. X. Сологяна: В 2 т.—М.: Изд-во стандартов, 1989.—Т. 1.—240 с.
19. Нормы радиационной безопасности НБР-76/87 и основные правила работы с радиоактивными веществами и другими источ¬никами ионизирующих излучений ОСП-72/87.—М.: Энергоатомиздат, 1988,— 160с.
20. Основы инженерной психологии / Под ред. Б. Ф. Ломова.— М.: Высш. шк., 1977.— 355 с.
21.Орлов Г. Г. Охрана труда в строительстве.— М.: Высш. шк., 1984.—343 с.
22.Охрана труда/Под ред. Б. А. Князевского.—М.; Высш. шк., 1982.—311 с.
23. Охрана труда в электроустановках / Под ред. Б. А. Князевского.—М.: Энергоиздат, 1983.—336с.
24. Охрана труда/Под ред. Ф. М, Канарева.— М.: Колос, 1982. — 351 с.
25. Охрана труда в машиностроении/Под ред. Е. Я. Юдина и С. В. Белова.—М.: Машиностроение, 1983.—432с.
26. Охрана труда в радио- и электронной промышленности/ Под.ред. С. П. Павлова.—М.; Энергия. 1979.—208с.
27. Павлов С. П., Губонина 3. И. Охрана труда в приборострое¬нии.—М.: Высш. щк„ 1986.—215 с.
28. Пыжик Г. М., Савицкий В. Е., Гогиташвили Г. Г. Управле¬ние безопасностью труда на основе стандартизации.— К.: Техника. 1981.—86с.
29. Полтев М. К. Охрана труда в машиностроении.— М,:Высш. шк.. 1980.—294с.
30. Правила технической эксплуатации электроустановок по¬требителей и Правила техники безопасности при эксплуатации электроустановок потребителей.— М.: Энергоатомиздат, 1986,— 421 с.
31.Правила устройства электроустановок.— М.: Энергоиздат, 1986.— 646 с.
32.Правила безопасности при работе с инструментом и приспо¬соблениями. —М.: Энергоатомиздат, 1986.— 175с.
33. Положение о расследовании и учете несчастных случаев на производстве.— М.: Профиздат, 1982.— 3i с.
34. Салов А. И. Охрана труда на предприятиях автомобильного транспорта,—М.: Транспорт, 1985.—351 с.
35.Справочная книга по охране труда в машиностроении / Под ред. О. Н. Русака,—М,. Л.: Машиностроение, 1989.—541 с.
36. Хорбенко И. Г. Звук. Ультразвук. Инфразвук.— М.; Знание, 1986.— 191 с.
37. Штефан Б. П, Методические указания по расчету ожидаемого уровня шума на рабочих местах с использованием ЭВМ/Винниц¬кий политехн. ин-т.—К.; МПП, 1982.—23 с.
38. Щербина Я. Я., Щербина И. Я. Основы противопожарной защиты.—
39. Инструктивно-методические указания по взиманию платы за загрязнение окружающей природной среды, утверждены Минприроды России письмом N 01-15/65-265 от 26 января 1993 года (57К)
40. http://www.ecology.sp.ru/
41. Голуб Е.Б. «Экономика природопользования»






Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00602
© Рефератбанк, 2002 - 2024