Вход

Автоматизированный априорный анализ статистической совокупности в среде MS Excel, вариант № 21

Рекомендуемая категория для самостоятельной подготовки:
Контрольная работа*
Код 302497
Дата создания 06 октября 2013
Страниц 14
Мы сможем обработать ваш заказ (!) 23 декабря в 16:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
730руб.
КУПИТЬ

Описание

Постановка задачи
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
Для автоматизации статистических расчетов используются средства электронных таблиц процессора Excel.
Выборочные данные представлены на Листе 1 Рабочего файла в табл.1

В процессе исследован ...

Содержание

Постановка задачи
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
Для автоматизации статистических расчетов используются средства электронных таблиц процессора Excel.
Выборочные данные представлены на Листе 1 Рабочего файла в табл.1

В процессе исследования совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
1. Выявить наличие среди исходных данных резко выделяющихся значений признаков (аномалий в данных) и исключить их из выборки.
2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую ( ), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( ), среднее квадратическое отклонение ( ), коэффициент вариации (Vσ).
3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) количество попаданий индивидуальных значений признаков в диапазоны ( ), ( ), ( )..
4. Сравнить распределения единиц совокупности по двум изучаемым признакам на основе анализа:
а) колеблемости признаков;
б) однородности единиц;
в) надежности (типичности) средних значений признаков.
5. Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.
II. Статистический анализ генеральной совокупности
1. Рассчитать генеральную дисперсию , генеральное среднее квадратическое отклонение и ожидаемый размах вариации признаков RN. Сопоставить значения генеральной и выборочной дисперсий.
2. Для изучаемых признаков рассчитать:
а) среднюю ошибку выборки;
б) предельные ошибки выборки для уровней надежности P=0,683, P=0,954 и границы, в которых будут находиться средние значения признака в генеральной совокупности при заданных уровнях надежности.
3. Рассчитать коэффициенты асимметрии As и эксцесса Ek. На основе полученных оценок охарактеризовать особенности формы распределения единиц генеральной совокупности по каждому из изучаемых признаков.
III. Экономическая интерпретация результатов статистического исследования предприятий
В этой части исследования необходимо ответить на ряд вопросов.
1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?
2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?
3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?
4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать

Введение

Постановка задачи
При проведении статистического наблюдения за деятельностью предприятий корпорации получены выборочные данные о среднегодовой стоимости основных производственных фондов и выпуске продукции за год по 32-м предприятиям, выпускающим однотипную продукцию (выборка 10%-ная, механическая).
В статистическом исследовании эти предприятия выступают как единицы выборочной совокупности. Генеральную совокупность образуют все предприятия корпорации. Анализируемые признаки предприятий – Среднегодовая стоимость основных производственных фондов и Выпуск продукции – изучаемые признаки единиц совокупности.
Для автоматизации статистических расчетов используются средства электронных таблиц процессора Excel.
Выборочные данные представлены на Листе 1 Рабочего файла в табл.1

В процессе исследован ия совокупности необходимо решить ряд задач.
I. Статистический анализ выборочной совокупности
1. Выявить наличие среди исходных данных резко выделяющихся значений признаков (аномалий в данных) и исключить их из выборки.
2. Рассчитать обобщающие статистические показатели совокупности по изучаемым признакам: среднюю арифметическую ( ), моду (Мо), медиану (Ме), размах вариации (R), дисперсию( ), среднее квадратическое отклонение ( ), коэффициент вариации (Vσ).
3. На основе рассчитанных показателей в предположении, что распределения единиц по обоим признакам близки к нормальному, оценить:
а) степень колеблемости значений признаков в совокупности;
б) степень однородности совокупности по изучаемым признакам;
в) количество попаданий индивидуальных значений признаков в диапазоны ( ), ( ), ( )..
4. Сравнить распределения единиц совокупности по двум изучаемым признакам на основе анализа:
а) колеблемости признаков;
б) однородности единиц;
в) надежности (типичности) средних значений признаков.
5. Построить интервальный вариационный ряд и гистограмму распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов и установить характер (тип) этого распределения.
II. Статистический анализ генеральной совокупности
1. Рассчитать генеральную дисперсию , генеральное среднее квадратическое отклонение и ожидаемый размах вариации признаков RN. Сопоставить значения генеральной и выборочной дисперсий.
2. Для изучаемых признаков рассчитать:
а) среднюю ошибку выборки;
б) предельные ошибки выборки для уровней надежности P=0,683, P=0,954 и границы, в которых будут находиться средние значения признака в генеральной совокупности при заданных уровнях надежности.
3. Рассчитать коэффициенты асимметрии As и эксцесса Ek. На основе полученных оценок охарактеризовать особенности формы распределения единиц генеральной совокупности по каждому из изучаемых признаков.
III. Экономическая интерпретация результатов статистического исследования предприятий
В этой части исследования необходимо ответить на ряд вопросов.
1. Типичны ли образующие выборку предприятия по значениям изучаемых экономических показателей?
2. Каковы наиболее характерные для предприятий значения показателей среднегодовой стоимости основных фондов и выпуска продукции?
3. Насколько сильны различия в экономических характеристиках предприятий выборочной совокупности? Можно ли утверждать, что выборка сформирована из предприятий с достаточно близкими значениями по каждому из показателей?
4. Какова структура предприятий выборочной совокупности по среднегодовой стоимости основных фондов? Каков удельный вес предприятий с наибольшими, наименьшими и типичными значениями данного показатели? Какие именно это предприятия?
5. Носит ли распределение предприятий по группам закономерный характер и какие предприятия (с более высокой или более низкой стоимостью основных фондов) преобладают в совокупности?
6. Каковы ожидаемые средние величины среднегодовой стоимости основных фондов и выпуска продукции на предприятиях корпорации в целом? Какое максимальное расхождение в значениях каждого показателя можно ожидать

Фрагмент работы для ознакомления

[1043,68;2156,32]
[836,36;2163,64]
28
28
93,3
93,3
[765,52;2434,48]
[504,54;2495,46]
32
32
100
100
На основе данных табл.9 структура рассеяния значений признака по трем диапазонам (графы 5 и 6) сопоставляется со структурой рассеяния по правилу «трех сигм», справедливому для нормальных и близких к нему распределений:
68,3% значений располагаются в диапазоне (),
95,4% значений располагаются в диапазоне (),
99,7% значений располагаются в диапазоне ().
Если полученная в табл. 9 структура рассеяния хi по 3-м диапазонам незначительно расходится с правилом «трех сигм», можно предположить, что распределение единиц совокупности по данному признаку близко к нормальному.
Расхождение с правилом «трех сигм» может быть существенным. Например, менее 60% значений хi попадают в центральный диапазон () или значительно более 5% значения хi выходит за диапазон (). В этих случаях распределение нельзя считать близким к нормальному.
Вывод:
Сравнение данных графы 5 табл.9 с правилом «трех сигм» показывает на их незначительное расхождение, следовательно, распределение единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов можно считать близким к нормальному.
Сравнение данных графы 6 табл.9 с правилом «трех сигм» показывает на незначительное расхождение, следовательно, распределение единиц совокупности по признаку Выпуск продукции можно считать близким к нормальному.
Задача 4. Для ответа на вопросы 4а) – 4в) необходимо воспользоваться табл.8 и сравнить величины показателей для двух признаков.
Для сравнения степени колеблемости значений изучаемых признаков, степени однородности совокупности по этим признакам, надежности их средних значений используются коэффициенты вариации V признаков.
Вывод:
Так как V для первого признака меньше, чем V для второго признака, то колеблемость значений первого признака меньше колеблемости значений второго признака, совокупность более однородна по первому признаку, среднее значение первого признака является более надежным, чем у второго признака.
Задача 5. Интервальный вариационный ряд распределения единиц совокупности по признаку Среднегодовая стоимость основных производственных фондов представлен в табл.7, а его гистограмма и кумулята – на рис.2.
Возможность отнесения распределения признака «Среднегодовая стоимость основных производственных фондов» к семейству нормальных распределений устанавливается путем анализа формы гистограммы распределения. Анализируются количество вершин в гистограмме, ее асимметричность и выраженность «хвостов», т.е. частоты появления в распределении значений, выходящих за диапазон ().
1. При анализе формы гистограммы прежде всего следует оценить распределение вариантов признака по интервалам (группам). Если на гистограмме четко прослеживаются два-три «горба» частот вариантов, это говорит о том, что значения признака концентрируются сразу в нескольких интервалах, что не соответствует нормальному закону распределения.
Если гистограмма имеет одновершинную форму, есть основания предполагать, что выборочная совокупность может иметь характер распределения, близкий к нормальному.
2. Для дальнейшего анализа формы распределения используются описательные параметры выборки – показатели центра распределения (, Mo, Me) и вариации (). Совокупность этих показателей позволяет дать качественную оценку близости эмпирических данных к нормальной форме распределения.
Нормальное распределение является симметричным, и для него выполняются соотношения:
=Mo=Me
Нарушение этих соотношений свидетельствует о наличии асимметрии распределения. Распределения с небольшой или умеренной асимметрией в большинстве случаев относятся к нормальному типу.
3. Для анализа длины «хвостов» распределения используется правило «трех сигм». Согласно этому правилу в нормальном и близким к нему распределениях крайние значения признака (близкие к хmin и хmax) встречаются много реже (5-7 % всех случаев), чем лежащие в диапазоне (). Следовательно, по проценту выхода значений признака за пределы диапазона () можно судить о соответствии длины «хвостов» распределения нормальному закону.
Вывод:
1. Гистограмма является одновершинной.
2. Распределение приблизительно симметрично, так как параметры , Mo, Me отличаются незначительно:
= 1600, Mo=1657,5, Me=1617,25
3. “Хвосты” распределения не очень длинны, т.к. согласно графе 5 табл.9, 6,7% вариантов лежат за пределами интервала ()= млн. руб.
Следовательно, на основании п.п. 1,2,3, можно сделать заключение о близости изучаемого распределения к нормальному.
II. Статистический анализ генеральной совокупности
Задача 1. Рассчитанные в табл.3 генеральные показатели представлены в табл.10.
Таблица 10
Описательные статистики генеральной совокупности
Обобщающие статистические показатели совокупности по изучаемым признакам
Признаки
Среднегодовая стоимость основных производственных фондов
Выпуск продукции
Стандартное отклонение , млн. руб.
278,16
331,82
Дисперсия выборки
77370,81034
110102,08
Асимметричность As
-0,21
0,02
Эксцесс Ek
-0,34
-0,21
Для нормального распределения справедливо равенство
RN=6N.
В условиях близости распределения единиц генеральной совокупности к нормальному это соотношение используется для прогнозной оценки размаха вариации признака в генеральной совокупности.
Ожидаемый размах вариации признаков RN:
- для первого признака RN =1668,96,
- для второго признака RN =1990,92.
Соотношение между генеральной и выборочной дисперсиями:
- для первого признака 1,03, т.е. расхождение между дисперсиями незначительное;
-для второго признака 1,03, т.е. расхождение между дисперсиями незначительное.
Задача 2. Применение выборочного метода наблюдения связано с измерением степени достоверности статистических характеристик генеральной совокупности, полученных по результатам выборочного наблюдения. Достоверность генеральных параметров зависит от репрезентативности выборки, т.е. от того, насколько полно и адекватно представлены в выборке статистические свойства генеральной совокупности.
Как правило, статистические характеристики выборочной и генеральной совокупностей не совпадают, а отклоняются на некоторую величину ε, которую называют ошибкой выборки (ошибкой репрезентативности). Ошибка выборки – это разность между значением показателя, который был получен по выборке, и генеральным значением этого показателя. Например, разность
= |-|
определяет ошибку репрезентативности для средней величины признака.
Так как ошибки выборки всегда случайны, вычисляют среднюю и предельную ошибки выборки.
1. Для среднего значения признака средняя ошибка выборки (ее называют также стандартной ошибкой) выражает среднее квадратическое отклонение  выборочной средней от математического ожидания M[] генеральной средней .
Для изучаемых признаков средние ошибки выборки даны в табл. 3:
- для признака Среднегодовая стоимость основных производственных фондов
=50,78
- для признака Выпуск продукции
=60,58
2. Предельная ошибка выборки определяет границы, в пределах которых лежит генеральная средняя . Эти границы задают так называемый доверительный интервал генеральной средней – случайную область значений, которая с вероятностью P, близкой к 1, гарантированно содержит значение генеральной средней. Эту вероятность называют доверительной вероятностью или уровнем надежности.
Для уровней надежности P=0,954; P=0,683 оценки предельных ошибок выборки даны в табл. 3 и табл. 4.
Для генеральной средней предельные значения и доверительные интервалы определяются выражениями:
,
Предельные ошибки выборки и ожидаемые границы для генеральных средних представлены в табл. 11.
Таблица 11
Предельные ошибки выборки и ожидаемые границы для генеральных средних
Доверительная
вероятность
Р
Коэффи-циент
доверия
t
Предельные ошибки выборки, млн. руб.
Ожидаемые границы для средних , млн. руб.
для первого
признака
для второго
признака
для первого
признака
для второго
признака
0,683
1
51,71
61,68
1548,29≤X≤1651,71
1438,29≤X≤1561,66
0,954
2

Список литературы

-
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00487
© Рефератбанк, 2002 - 2024