Вход

Проект установки для удаления отходящих газов паров органических растворителей

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 300515
Дата создания 10 января 2014
Страниц 33
Мы сможем обработать ваш заказ (!) 22 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
2 440руб.
КУПИТЬ

Описание

 Проведён аналитический обзор методов очистки отходящих газов от паров органических растворителей
 Разработана установку для очитки газов от паров н-бутанола (концентрации С0=2500 мг/м3) производительностью 3600 м3/ч.
...

Содержание

Введение
1. Аналитический обзор. Методы очистки отходящих газов от паров органических растворителей
1.1 Абсорбционные методы
1.2 Каталитические методы
1.3 Методы конденсации и компримирования
1.4 Термические методы
1.5 Метод биохимической очистки
2. Предлагаемая технологическая схема очистки отходящих газов от органических растворителей на примере н-бутанола
2.1 Основные свойства рабочих сред
2.1.1 Н-бутанол. Физико-химические свойства
2.1.2 Бензол. Физико-химические свойства
2.2 Описание технологической схемы
3. Расчетная часть. Расчет адсорбера системы ВТР периодического действия с неподвижным слоем адсорбента для улавливания паров н-бутанола
3.1 Построение изотермы адсорбции
Заключение
Список использованной литературы

Введение

Одним из следствий техногенного влияния на окружающую среду в ряде стран в настоящее время является заметное ухудшение состояния атмосферного воздуха.
Наиболее эффективным направлением в области защиты атмосферного воздуха от загрязнений является использование малоотходных ресурсо- и энергосберегающих технологических процессов с замкнутыми производственными циклами, исключающими или резко снижающими выброс вредных веществ в окружающую среду. Однако не всегда удается разработать и внедрить малоотходные технологические процессы, обеспечивающие полную комплексную очистку вредных технологических выбросов в атмосферу, поэтому в настоящее время одним из основных средств предотвращения вредных выбросов остается разработка и внедрение эффективных систем очистки газов.
Во многих отраслях промышленн ости именно газоочистительная аппаратура совместно с другим технологическим оборудованием обеспечивает малоотходное производство. Это касается энергетики, черной и цветной металлургии, химической и нефтеперерабатывающей промышленности. Поэтому рассмотрение вопросов о методах очистки и системах газоочистительной аппаратуры, динамики и перспектив ее развития является важной задачей, имеющей экономическое, экологическое и технологическое значение.

Фрагмент работы для ознакомления

Иногда адсорбент, потерявший активность (экранированный пылью, смолой), полностью заменяют.Общие достоинства адсорбционных методов очистки газов:глубокая очистка газов от токсичных примесей;сравнительная легкость регенерации этих примесей с превращением их в товарный продукт или возвратом в производство; таким образом, осуществляется принцип безотходной технологии.Адсорбционный метод особенно рационален для удаления токсических примесей, содержащихся в малых концентрациях, то есть как завершающий этап санитарной очистки отходящих газов.Недостатки большинства адсорбционных установок — периодичность процесса и связанная с этим малая интенсивность реакторов, высокая стоимость периодической регенерации адсорбентов. Применение непрерывных способов очистки в движущемся и кипящем слое адсорбентачастично устраняет эти недостатки, но требует высокопрочных промышленных сорбентов, разработка которых для большинства процессов еще не завершена.1.2 Каталитические методыКаталитические методы очистки газов основаны на реакциях в присутствии твердых катализаторов, то есть на закономерностях гетерогенного катализатора. В результате каталитических реакций примеси, находящиеся в газе, превращаются в другие соединения, в отличие от рассмотренных методов примеси не извлекаются из газа, а трансформируются в безвредные соединения, присутствие которых допустимо в выхлопном газе, либо в соединения, легко удаляемые из газового потока. Если образовавшиеся вещества подлежат удалению, то требуются дополнительные операции (например, извлечение жидкими или твердыми сорбентами). Очистке подвергаются газы, не содержащие пыли и каталитических ядов. Методы используются для очистки газов от оксидов азота, серы, углерода и от органических примесей. Проводят их в реакторах различной конструкции.Широко распространен способ каталитического окисления токсичных органических соединений и оксида углерода в составе отходящих газов с применением активных катализаторов, не требующих высокой температуры зажигания, например металлов группы платины, нанесенных на носители. Обычно любые газообразные органические соединения могут подвергаться каталитическому сжиганию при условии, что продукты сгорания сами газообразны. К таким органическим примесям относятся соединения, содержащие серу или азот, но не кремний- и фосфорорганические соединения. Если содержание неорганической пыли в сжигаемом газе велико, она должна быть предварительно удалена, однако малое ее количество, которое обычно содержится в воздухе, может пройти через установку каталитического сжигания и, в ряде случаев даже уловлено в ней. Этот осадок удаляется при периодической (годовой или полугодовой) промывке катализатора.Каталитические методы получают все большее распространение благодаря глубокой очистке газов от токсичных примесей (до 99,9%) при сравнительно невысоких температурах и обычном давлении, а также при весьма малых начальных концентрациях примесей. Каталитические методы позволяют утилизировать реакционную теплоту, то есть создавать энерготехнологические системы. Установки каталитической очистки просты в эксплуатации и малогабаритны.Недостаток многих процессов каталитической очистки — образование новых веществ, которые подлежат удалению из газа другими методами (абсорбция, адсорбция), что усложняет установку и снижает общий экономический эффект.1.3 Методы конденсации и компримированияВ рекуперационной технике наряду с другими методами для улавливания паров летучих растворителей используют методы конденсации и компримирования.Метод конденсации – уменьшения давления насыщенного пара растворителя при понижении температуры. Смесь паров растворителя с воздухом предварительно охлаждают в теплообменнике, а затем конденсируют. Достоинство: простота аппаратурного оформления; эксплуатация рекуперационной установки. Однако проведение процесса очистки паровоздушных смесей методом конденсации сильно осложнено, поскольку содержание паров летучих растворителей в этих смесях обычно превышает нижний предел их взрываемости. Недостатки: высокие расходы холодильного агента, электроэнергии и низкий процент конденсации паров (выход) растворителей (70—90%).Метод компримирования то же явление, что и метод конденсации, но применительно к парам растворителей, находящимся под избыточным давлением. Однако, метод компримирования более сложен в аппаратурном оформлении, так как в схеме улавливания паров растворителей необходим компримирующий агрегат. Кроме того, он сохраняет все недостатки, присущие методу конденсации, и не обеспечивает возможность улавливания паров летучих растворителей при их низких концентрациях.1.4 Термические методыТермические методы обезвреживания газовых выбросов применяют для обезвреживания газов от легко окисляемых токсичных, а также дурно пахнущих примесей. Их преимуществами являются относительная простота аппаратурного оформления и универсальность использования, так как на работу термических нейтрализаторов мало влияет состав обрабатываемых газов.Газовые выбросы, содержащие горючие компоненты, сильно различаются для различных промышленных источников как по номенклатуре подлежащих устранению компонентов, так и по числу последних, а также по теплоте сгорания и объемам, составляющим от десятков до сотен тысяч м3/ч. Способы газоочистки, основанные на высокотемпературном сжигании горючих примесей, широко используют в лакокрасочных производствах, процессах получения ряда видов химической, электротехнической и электронной продукции, в пищевой индустрии, в типографском деле, при обезжиривании и окраске деталей и изделий и во многих других процессах.Суть этих способов заключается в окислении обезвреживаемых компонентов кислородом. Они применимы для обезвреживания практически любых паров и газов, продукты сжигания которых менее токсичны, чем исходные вещества. Прямое сжигание используют в тех случаях, когда концентрация горючих веществ в отходящих газах не выходит за пределы воспламенения. Процесс проводят в обычных или усовершенствованных топочных устройствах, в промышленных печах и топках котельных агрегатов, а также в открытых факелах.Конструкция нейтрализатора должна обеспечивать необходимое время пребывания обрабатываемых газов в аппарате при температуре, гарантирующей возможность достижения заданной степени их обезвреживания (нейтрализации). Время пребывания обычно составляет от 0,1 до 0,5 с (иногда до 1 с), рабочая температура в большинстве случаев ориентирована на нижний предел самовоспламенения обезвреживаемых газовых смесей и превосходит температуру воспламенения на 100-150°С.В некоторых случаях отходящие газы со значительным содержанием горючих компонентов могут быть использованы как топливо. В качестве самостоятельного топлива могут сжигаться отходящие газы с теплотворной способностью от 3,35 до 3,77 МДж/м3 и ниже, если они обладают повышенной температурой. Прямое сжигание газообразных отходов с использованием дополнительного топлива считают целесообразным в случаях, когда обезвреживаемые компоненты газовых выбросов могут обеспечить не менее 50% общего тепловыделения. Однако обычно содержание горючих примесей в отходящих газах значительно меньше нижнего предела воспламенения, что вызывает необходимость существенных затрат дополнительного топлива и утилизации тепла процесса сжигания прежде всего с целью сокращения этих затрат. Расход дополнительного топлива при сжигании таких газообразных отходов, нагретых до 50 °С, составляет от 25 до 40 кг условного топлива на 1000 м3 обрабатываемых газов.1.5 Метод биохимической очисткиБиохимические методы газоочистки основаны на способности микроорганизмов разрушать и преобразовывать различные соединения. Поглощение и обезвреживание вредных примесей, содержащихся в воздухе, при биологической очистке осуществляется за счет жизнедеятельности микроорганизмов. Особенностью метода является использование естественных биологических процессов без применения чуждых экологической системе материалов и реагентов.Сущность биохимического метода состоит в аэробном разложении, окислении и ассимиляции микроорганизмами уловленных примесей. Разложение веществ происходит под воздействием ферментов, вырабатываемых микроорганизмами под влиянием отдельных соединений или группы веществ, присутствующих в очищаемых газах.В результате жизнедеятельности микроорганизмов происходит разложение вредных веществ, содержащихся в воздухе, и превращение их в менее опасные вещества. Скорость протекания биохимических реакций зависит от состава очищаемого воздуха, концентрации в нем аэрозольных частиц, а так же от вида, количества и активности микроорганизмов.В качестве среды обитания микроорганизмов в биофильтре применяют компост, землю, торф, кору деревьев, пластмассовые элементы и др. Активность микроорганизмов зависит от температуры, влажности, кислотности среды, насыщения кислородом, наличия веществ для питания микроорганизмов в очищаемом воздухе.Биологический метод очистки может быть реализован в аппаратах или устройствах трех типов:в фильтрах со слоем увлажненной почвы или компоста, через который пропускается очищаемый газ при нагрузке до 100 мг/(кг·ч);в биофильтрах с инертной насадкой, на поверхности которой искусственно выращивается биопленка активного ила (суспензия, содержащая 5 – 10 г/л активного ила);в аппаратах барботажного типа (скрубберах) с водной суспензией микроводорослей хлореллы или активного ила.Содержащиеся в очищаемых газах вредные вещества улавливаются слоем насадки или абсорбентом и расщепляются микроорганизмами активного ила. Способность активного ила к расщеплению уловленных веществ устанавливается по соотношению полной биохимической потребности в кислороде (БПКп) до начала процессов нитрификации и химической потребности в кислороде (ХПК), которая характеризует окисление вещества до оксида углерода и воды.При биологической очистке необходимо создать определенный температурно-влажный режим для микроорганизмов, которые являются живыми существами и нуждаются в определенной среде и питании. Если одно из условий (температура, влажность, соответствующая питательная среда) не создано, количество микроорганизмов уменьшается, и они могут погибнуть. Необходимо выбрать оптимальный вид микроорганизмов и условия их обитания с учетом вида очищаемой среды и содержащихся в ней веществ.2. Предлагаемая технологическая схема очистки отходящих газов от органических растворителей на примере н-бутанола2.1 Основные свойства рабочих сред2.1.1 Н-бутанол. Физико-химические свойства н-Бутанол – бесцветная жидкость со спиртовым запахомХимическая формула С4H9OH, эмпирическая формула С4H10O, молярная масса 74,12 г/моль, температура кипения 117,4оС, температура вспышки 34оС, самовоспламенения 345 оС, плотность ρ = 0,8099 г/см³, растворимость в воде 7,9% масс. при 20 оС, смешивается со многими органическими растворителями. Агрегатное состояние в воздухе – пары.Н-бутанол используется как растворитель для красок, лаков и олиф, натуральных и синтетических смол, каучуков, растительных масел, красок и алкалоидов. Он играет роль промежуточного звена в производстве фармацевтических препаратов и химикалий, и используется в отраслях промышленности, производящих искусственную кожу, текстиль, небьющееся стекло, резиновый клей, шеллак, плащи, фотографические пленки и духи.Токсикологическая характеристика.Наркотик с раздражающим действием паров на слизистые оболочки глаз и верхних дыхательных путей. Класс опасности – третий. Предельно допустимая концентрация в воздухе рабочей зоны – 10мг/м3.2.1.2 Бензол. Физико-химические свойстваБензол – бесцветная жидкость с приятным сладковатым запахом. Химическая формула С6H6. Молярная масса 78,11 г/моль, температура плавления 5,5 °C; температура кипения 80,1 °C; температура воспламенения паров -11оС; температура самовозгорания 562 оС. Подобно всем углеводородам бензол горит и образует много копоти. С воздухом образует взрывоопасные смеси, хорошо смешивается с эфирами, бензином и другими органическими растворителями, с водой образует азеотропную смесь с температурой кипения 69,25 °C (91% бензола). Растворимость в воде 1,79 г/л (при 25 °C).Простейший ароматический углеводород.

Список литературы

1. Редин, В.И., Князев, А.С. Проектирование природоохранных объектов: учебное пособие / В.И. Редин, А.С. Князев. – СПб.: СПбГТИ (ТУ), 2010. 72 с.
2. Дороговцева, А.А. Практические работы по дисциплине экономика природопользования: методические указания / А.А. Дороговцева. – СПб.: СПбГТИ (ТУ), 2007. – 52 с.
3. Основные процессы и аппараты химической технологии. Пособие по проектированию / Под ред. Ю.И. Дытнерского , 4-е изд., стереотипное. М.: ООО ИД «Альянс», 2008 – 496 с.
4. Павлов, К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии: учебное пособие для студентов хим. – технолог. Спец. вузов / К.Ф. Павлов, П.Г. Романков, А.А. Носков. Под редакцией П.Г. Романкова. – 10-е изд., перераб. и доп. – СПб.: Альянс, 2004.
5. Основные процессы и аппараты химической технологии: Пособие по курсовому проектированию / Под ред. Ю.И. Дытнерского. – М.: Химия, 2008
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00494
© Рефератбанк, 2002 - 2024