Вход

Применение гальванических элементов и аккумуляторов в технике

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 299901
Дата создания 02 февраля 2014
Страниц 16
Мы сможем обработать ваш заказ (!) 24 апреля в 14:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
610руб.
КУПИТЬ

Описание

В данной работе описаны типы гальванических элементов и аккумуляторов их применение, а также химические и физические свойства. Также подробное общее описание аккумуляторов и гальванических элементов. Работы была защищена в этом году на пятерку. ...

Содержание

1. Гальванические элементы
1.1. Описание
1.2. Типы гальванических элементов и их применение.
1.2.1. Угольно-цинковые (Марганец-цинковый)
1.2.2. Щелочные
1.2.3. Ртутно-цинковые
1.2.4. Литиевые
1.2.5. Воздушно-цинковый


2. Аккумуляторы
2.1. Описание
2.2. Типы аккумуляторов и их применение.
2.2.1. Кислотные аккумуляторы
2.2.2. Щелочные аккумуляторы
2.2.3. Герметичные аккумуляторы
2.2.4. Никель-цинковые аккумуляторы
2.2.5. Никель-металлогидридные аккумуляторы (Ni-MH)
2.2.6. Литий-полимерные аккумуляторы (Li-pol)



3. Список литературы и электронных ресурсов

Введение

Гальванические источники тока одноразового действия представляют собой унифицированный контейнер, в котором находятся электролит, абсорбируемый активным материалом сепаратора, и электроды (анод и катод), поэтому они называются сухими элементами. Этот термин используется применительно ко всем элементам, не содержащим жидкого электролита. К обычным сухим элементам относятся углеродно-цинковые элементы.
Аккумуляторы являются химическими источниками электрической энергии многоразового действия. Они состоят из двух электродов (положительного и отрицательного), электролита и корпуса. Накопление энергии в аккумуляторе происходит при протекании химической реакции окисления-восстановления электродов. При разряде аккумулятора происходят обрат ные процессы. Напряжение аккумулятора - это разность потенциалов между полюсами аккумулятора при фиксированной нагрузке

Фрагмент работы для ознакомления

Литиевые элементы
В них применяются литиевые аноды, органический электролит и катоды из различных материалов. Они обладают очень большими сроками хранения, высокими плотностями энергии и работоспособны в широком интервале температур, поскольку не содержат воды.
Так как литий обладает наивысшим отрицательным потенциалом по отношению ко всем металлам, литиевые элементы характеризуются наибольшим номинальным напряжением при минимальных габаритах (рис. 1.6).

В качестве растворителей в таких элементах обычно используются органические соединения.
Также растворителями могут быть неорганические соединения, например, SOCl2, которые одновременно являются реактивными веществами.
Ионная проводимость обеспечивается введением в растворители солей, имеющих анионы большихразмеров, например: LiAlCl4, LiClO4, LiBFO4. Удельная электрическая проводимость неводных растворов электролитов на 1...2 порядка ниже проводимости водных. Кроме того, катодные процессы в них обычно протекают медленно, поэтому в элементах с неводными электролитами плотности тока невелики.
К недостаткам литиевых элементов следует отнести их относительно высокую стоимость, обусловленную высокой ценой лития, особыми требованиями к их производству (необходимость инертной атмосферы, очистка неводных растворителей). Следует также учитывать, что некоторые литиевые элементы при их вскрытии взрывоопасны.
Такие элементы обычно выполняются в кнопочном исполнении с напряжением 1,5Ви3 В. Они успешно обеспечивают питанием схемы с потреблением порядка 30 мкА в постоянном или 100 мкА в прерывистом режимах.
Применение литиевых элементов
Литиевые элементы широко применяются в резервных источниках питания схем памяти, измерительных приборах и прочих высокотехнологичных системах.
1.2.4
Воздушно-цинковые элементы
Гальванический элемент, в котором в качестве анода используется цинк, электролит — водный раствор гидроксида калия (либо растворы хлорида цинка), катод — газовый (воздушный электрод).
Отличается весьма высокой удельной энергоёмкостью (выше чем у литий-ионных аккумуляторов). Широкому распространению препятствует короткий срок эксплуатации, связанный с высыханием электролита, однако ведутся разработки по устранению этого недостатка.
Применение воздушно-цинковых элементов
Применяется для питания слуховых аппаратов.
2.1
АККУМУЛЯТОРЫ (ОПИСАНИЕ)
Аккумуляторы являются химическими источниками электрической энергии многоразового действия. Они состоят из двух электродов (положительного и отрицательного), электролита и корпуса. Накопление энергии в аккумуляторе происходит при протекании химической реакции окисления-восстановления электродов. При разряде аккумулятора происходят обратные процессы. Напряжение аккумулятора - это разность потенциалов между полюсами аккумулятора при фиксированной нагрузке.
Для получения достаточно больших значений напряжений или заряда отдельные аккумуляторы соединяются между собой последовательно или параллельно в батареи. Существует ряд общепринятых напряжений для аккумуляторных батарей: 2; 4; 6; 12; 24 В.

Ограничимся рассмотрением следующих аккумуляторов:
Кислотные аккумуляторы
Щелочные аккумуляторы
Литий-ионные аккумуляторы (Li-ion)
Никель-металлогидридные аккумуляторы (Ni-MH)
Литий-полимерные аккумуляторы (Li-pol)
Литий-железо-сульфидный аккумулятор
2.2
ТИПЫ АККУМУЛЯТОРОВ И ИХ ПРИМЕНЕНИЕ.
2.2.1
КИСЛОТНЫЕ АККУМУЛЯТОРЫ
В качестве примера рассмотрим готовый к употреблению свинцовый аккумулятор. Он состоит из решетчатых свинцовых пластин, одни из которых заполнены диоксидом свинца, а другие - металлическим губчатым свинцом. Пластины погружены в 35-40% раствор H2SO4; при этой концентрации удельная электропроводность раствора серной кислоты максимальна.
При работе аккумулятора - при его разряде - в нем протекает окислительно-восстановительная реакция, в ходе которой металлический свинец окисляется:
Pb + SO4 = PbSO4 + 2e-
А диоксид свинца восстанавливается:
2-
Pb + SO4 + 4H+ + 2e- = PbSO4 + 2H2O
Электроны, отдаваемые атомами металлического свинца при окислении, принимаются атомами свинца PbO2 при восстановлении; электроны передаются от одного электрода к другому по внешней цепи.
Таким образом, металлический свинец служит в свинцовом аккумуляторе анодом и заряжен отрицательно, а PbO2 служит катодом и заряжен положительно.
Во внутренней цепи (в растворе H2SO4) при работе аккумулятора происходит перенос ионов. Ионы SO42- движутся к аноду, а ионы H+ - к катоду. Направление этого движения обусловлено электрическим полем, возникающим в результате протекания электродных процессов: у анода расходуются анионы, а у катода - катионы. В итоге раствор остается электронейтральным.
Если сложить уравнения, отвечающие окислению свинца и восстановлению PbO2, то получится суммарное уравнение реакции, протекающей в свинцовом аккумуляторе при его работе (разряде):
2-
Pb + PbO2 + 4H+ + 2SO4 = 2PbSO4 + 2H2O

Э.д.с. заряженного свинцового аккумулятора равна приблизительно 2В. По мере разряда аккумулятора материалы его катода (PbO2) и анода (Pb) расходуются. Расходуется и серная кислота. При этом напряжение на зажимах аккумулятора падает. Когда оно становится меньше значения, допускаемого условиями эксплуатации, аккумулятор вновь заряжают.
Для зарядки (или заряда) аккумулятор подключают к внешнему источнику тока (плюсом к плюсу и минусом к минусу). При этом ток протекает через аккумулятор в направлении, обратном тому, в котором он проходил при разряде аккумулятора. В результате этого электрохимические процессы на электродах "обращаются". На свинцовом электроде теперь происходит процесс восстановления
2-
PbSO4 + 2e- = Pb + SO4
т.е. этод электрод становится катодом. На электроде из PbO2 идет процесс окисления
PbSO4 + 2H2O = PbO2 + 4H+ + 2e-
следовательно этот электрод является теперь анодом. Ионы в растворе движутся в направлениях, обратных тем, в которых они перемещались при работе аккумулятора.
Складывая два последние уравнения, получим уравнение реакции, протекающей при зарядке аккумулятора:
2PbSO4 + 2H2O = Pb + PbO2 + 4H+ + 2SO4

Нетрудно заметить, что этот процесс противоположен тому, который протекает при работе аккумулятора: при зарядке аккумулятора в нем вновь получаются вещества, необходимые для его работы.
Свинцовые аккумуляторы обычно соединяют в батарею, которую помещают в моноблок из эбонита, термопласта, полипропилена, полистирола, полиэтилена, асфальтопековой композиции, керамики или стекла.
Одной из важнейших характеристик аккумулятора является срок службы или ресурс-наработка (число циклов). Ухудшение параметров аккумулятора и выход из строя обусловлены в первую очередь коррозией решетки и оползанием активной массы положительного электрода. Срок службы аккумулятора определяется в первую очередь типом положительных пластин и условиями эксплуатации.
Совершенствование свинцовых аккумуляторов идет по пути изыскания новых сплавов для решеток (например свинцово- кальциевых), облегченных и прочных материалов корпусов (например, на основе сополимера пропилена и этилена), улучшения качества сепараторов.
Применение кислотных аккумуляторов
Основные области применения: аккумуляторные батареи в автомобильном транспорте, аварийные источники электроэнергии.
2.2.2
Щелочные аккумуляторы
Серебряно-цинковые
Обладают хорошими электрическими характеристиками, имеют малую массу и объем. В них электродами служат оксиды серебра Ag2O, AgO (катод) и губчатый цинк (анод); электролитом служит раствор KOH.
При работе аккумулятора цинк окисляется, превращаясь в ZnO и Zn(OH)2, а оксид серебра восстанавливается до металла. Суммарную реакцию, протекающую при разряде аккумулятора, можно приближенно выразить уравнением:
AgO + Zn = Ag + ZnO
Э.Д.С. заряженного серебряно-цинкового аккумулятора приближенно равна 1,85 В. При снижении напряжения до 1,25 В аккумулятор заряжают. При этом процессы на электродах "обращаются": цинк восстанавливается, серебро окисляется - вновь получаются вещества, необходимые для работы аккумулятора.
Кадмиево-никелевые и железно-никелевые
КН и ЖН весьма сходны между собой. Основное их различие состоит в материале пластин отрицательного электрода; в аккумуляторах КН они кадмиевые, а в аккумуляторах ЖН - железные. Наиболее широкое применение имеют аккумуляторы КН.
Щелочные аккумуляторы в основном выпускаются с ламельными электродами. В них активные массы заключены в ламели - плоские коробочки с отверстиями. Активная масса положительных пластин заряженного аккумулятора в основном состоит из гидратированного оксида никеля (Ш) Ni2O3 x H2O или NiOOH. Кроме того, в ней содержится графит, добавляемый для увеличения электропроводности.
Активная масса отрицательных пластин аккумуляторов КН состоит из смеси губчатого кадмия с порошком железа, а аккумуляторов ЖН - из порошка восстановленного железа. Электролитом служит раствор гидроксида калия, содержащий небольшое количество LiOH.
Рассмотрим процессы, протекающие при работе аккумулятора КН. При разряде аккумулятора кадмий окисляется.
Cd + 2OH- = Cd(ОН)2 + 2е-
А NiOOH восстанавливается:
2NiOOH + 2H2O + 2e- = 2Ni(ОН)2 + 2ОН-
По внешней цепи при этом происходит перенос электронов от кадмиевого электрода к никелевому. Кадмиевый электрод служит анодом и заряжен отрицательно, а никелевый - катодом и заряжен положительно.
Суммарную реакцию, протекающую в аккумуляторе КН при его работе, можно выразить уравнением, которое получится при сложении двух последних электрохимических уравнений:
2NiOOH + 2H2O + Cd = 2NI(OH)2 + CD(OH)2
Э.Д.С. заряженного кадмиево-никелевого аккумулятора равна приблизительно 1,4 В. По мере работы (разряда) аккумулятора напряжение на его зажимах падает. Когда оно становится ниже 1В, аккумулятор заряжают.
При зарядке аккумулятора электрохимические процессы на его электродах "обращаются". На кадмиевом электроде происходит восстановление металла
Cd(OH)2 + 2e- = CD + 2OH-
На никелевом - окисление гидроксида никеля (П):
2Ni(OH)2 + 2OH- = 2NiOOH + 2H2O + 2e-
Суммарная реакция при зарядке обратна реакции, протекающей при разряде:
2Ni(OH)2 + Cd(OH)2 = 2NiOOH + 2H2O + Cd
Применение щелочных аккумуляторов
а) Серебрено-цинковые

Список литературы

1. Анисимов М. М. Физическая электроника.
2. Романов В. В. Химические источники тока.
3. Хрусталёв Д. А. Аккумуляторы.
4. Андреев И.Н. Электрохимические устройства
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00507
© Рефератбанк, 2002 - 2024