Вход

ВЗФЭИ-теория вероятности и математическая статистика

Рекомендуемая категория для самостоятельной подготовки:
Контрольная работа*
Код 296163
Дата создания 18 апреля 2014
Страниц 10
Мы сможем обработать ваш заказ (!) 24 декабря в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
850руб.
КУПИТЬ

Описание

ВЗФЭИ-теория вероятности и математическая статистика, контрольная рбота № 4, 2 вариант ...

Содержание

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критерий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

Введение

Задача № 1. Из 300 предприятий региона по схеме собственно-случайной бесповторной выборки было отобрано 100 предприятий, Распределение их по размеру годовой прибыли характеризуется следующими данными:


Годовая прибыль,
млн. руб. 10-20 20-30 30-40 40-50 50-60 Свыше 60 Итого
Число предприятий 4 12 36 24 16 8 100
Найти: а) границы, в которых с вероятностью 0,9901 заключена средняя годовая прибыль всех предприятий; б) вероятность того» что доля всех предприятий, годовая прибыль которых менее 40 млн руб., отличается от доли таких предприятий в выборке не более чем на 0,05 (по абсолютной величине); в) объем бесповторной выборки, при котором те же границы для средней годовой прибыли предприятий (см. п. а)) можно гарантировать с вероятностью 0,95.
Задача № 2. Поданным задачи 1, используя -критер ий Пирсона, при уровне значимости а = 0,05 проверить гипотезу о том, что случайная величина X— средняя годовая прибыль распределена по нормальному закону. Построить на одном чертеже гистограмму распределения и соответствующую нормальную кривую.
Задача № 3. Распределение 50 предприятий по двум признакам — вы¬пуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;


12,0-13.5 13,5-15,0 15,0-16.5 16,5-18.0 18,0-19,5 Итого
40-50 1 1 1 3
50-60 1 3 2 6
60-70 4 1 11 16
70-80 6 9 15
80-90 2 2 1 5
90-100 2 3 5
Итого 2 8 5 21 13 50
Необходимо:
1) Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.
2) Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.

Фрагмент работы для ознакомления

Параметры нормального закона распределения неизвестны. Заменяем их оценками по выборке =41 и =12.33. Число степеней свободы k=m-r-1=5-2-1=2, m=5-количество групп, r=2- количество неизвестных параметров распределения.Табл.1iiXiXi+1pi16,51030160,1818,020,225629,53040360,2828,152,1866312,54050240,3029,961,1866415,55060160,1717,110,0714518,56010000080,066,160,5465Σ62,520231000,0399,414,2170Критическое значение табулировано Наблюдаемое значение . Гипотеза о нормальном распределении среднегодовой прибыли всех предприятий принимается.Задача № 3. Распределение 50 предприятий по двум признакам — выпуску продукции X(млн. руб.) и размеру прибыли Y (млн руб.) — представлено в таблице;12,0-13.513,5-15,015,0-16.516,5-18.018,0-19,5Итого40-50111350-60132660-7041111670-80691580-90221590-100235Итого285211350Необходимо:Вычислить групповые средние X и Y, и построить эмпирические линии регрессии.Предполагая, что между переменными Х и Y существует линейная корреляционная зависимость: а) найти уравнения прямых регрессии, построить их графики на одном чертеже с эмпирическими линиями регрессии и дать экономическую интерпретацию полученных уравнений; 6) вычислить коэффициент корреляции, на уровне значимости а = 0,05 оценить его значимость и сделать вывод о тесноте и направлении связи между переменными X и Y; в) используя соответствующее уравнение регрессии, оценить средний размер прибыли при выпуске продукции в 63 млн. руб.Решение.Проведём вычисления в EXCEL.

Список литературы

Кремер Н.Ш. Теория вероятностей и математическая статистика. – Москва, ЮНИТИ, 2004г.
Очень похожие работы
Найти ещё больше
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00389
© Рефератбанк, 2002 - 2024