Вход

Симметрия и ее практическая направленость

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 294063
Дата создания 24 мая 2014
Страниц 28
Мы сможем обработать ваш заказ (!) 27 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
950руб.
КУПИТЬ

Описание

Работа 2014 года. Защищена на отлично. ...

Содержание

Введение………………………………………2
1. Симметрия в математике, физике..............4
2. Симметрия в живой природе...................10
3. Симметрия в неживой природе................16
4) Теория групп.............................................21
Заключение....................................................27
Использованная литература.........................28

Введение

Как говорил академик А.В. Шубников, посвятивший изучению симметрии всю свою долгую жизнь: «Изучение археологических памятников показывает, что человечество на заре своей культуры уже имело представление о симметрии и осуществляло её в рисунке и в предметах быта. Надо полагать, что применение симметрии в первобытном производстве определялось не только эстетическими мотивами, но в известной мере и уверенностью человека в большей пригодности для практики правильных форм».
Под симметрией (от греч. symmetria -- соразмерность) в широком смысле понимают правильность в строении тела и фигуры. Учение о симметрии представляет собой большую и важную ветвь тесно связанную с науками разных отраслей. С симметрией мы часто встречаемся в искусстве, архитектуре, технике, быту. Так, фасады многих зданий обл адают осевой симметрией. В большинстве случаев симметричны относительно оси или центра узоры на коврах, тканях, комнатных обоях. Симметричны многие детали механизмов, например, зубчатые колеса.
Заметим также, что симметрия широко используется в искусстве, особенно в европейском. Но в некоторых восточных культурах, например в японской, также широко используется асимметрия. Такая, подчеркнуто асимметричная структура, свойственна, в частности, канону дзэнского сада камней. Аналогичный принцип относится у японцев и к построению изображения на картине, которое должно быть сдвинуто к краю и занимает сравнительно небольшую площадь, уравновешиваясь более значительным свободным полем, символизирующим беспредельность мира.
Нам это было интересно, потому что данная тема затрагивает не только математику, хотя она и лежит в её основе, но и другие области науки, техники, природы. Симметрия, как мне кажется, является фундаментом природы, представление о котором слагалось в течение десятков, сотен, тысяч поколений людей.
Мы обратили внимание на то, что во многих вещах, в основе красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды -- от простейших до самых сложных. Можно говорить о симметрии, как о гармонии пропорций, как о «соразмерности», регулярности и упорядоченности.
Нам это важно, потому что для многих людей математика - скучная и сложная наука. Мы же хотим объяснить на примере симметрии, что математика - не только цифры, уравнения и решения, но и красота в строении геометрических тел, живых организмов и даже является фундаментом для многих наук от простых до самых сложных.

Фрагмент работы для ознакомления

Многие цветы обладают характерным свойством: цветок можно повернуть так, что каждый лепесток займёт положение соседнего, цветок же совместится с самим собой. Такой цветок обладает осью симметрии. Минимальный угол, на который нужно повернуть цветок вокруг оси симметрии, чтобы он совместился с самим собой, называется элементарным углом поворота оси. Этот угол для различных цветов не одинаков. Для ириса он равен 120є, для колокольчика - 72є, для нарцисса - 60є [4]. Поворотную ось можно характеризовать и с помощью другой величины, называемой порядком оси и показывающей, сколько раз произойдет совмещение при повороте на 360є. Те же цветы ириса, колокольчика и нарцисса обладают осями третьего, пятого и шестого порядков соответственно. Особенно часто среди цветов встречается симметрия пятого порядка. Это такие полевые цветы как колокольчик, незабудка, зверобой, лапчатка гусиная и др.; цветы плодовых деревьев - вишня, яблоня, груша, мандарин и др., цветы плодово-ягодных растений - земляника, ежевика, малина, шиповник; садовые цветы - настурция, флокс и др.В пространстве существуют тела, обладающие винтовой симметрией, т. е. совмещающиеся со своим первоначальным положением после поворота на угол вокруг оси, дополненного сдвигом вдоль той же оси.Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса, что буквально означает строение листа. Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.2) Симметрия животныхВнимательное наблюдение обнаруживает, что основу красоты многих форм, созданных природой, составляет симметрия, точнее, все её виды - от простейших до самых сложных. Симметрия в строение животных - почти общее явление, хотя почти всегда встречаются исключения из общего правила.Под симметрией у животных понимают соответствие в размерах, форме и очертаниях, а также относительное расположение частей тела, находящихся на противоположных сторонах разделяющей линии. Строение тела многих многоклеточных организмов отражает определённые формы симметрии, такие как радиальную (лучевая) или билатеральную (двусторонняя), которые являются основными типами симметрии. Кстати, склонность к регенерации (восстановление) зависит от типа симметрии животного.В биологии о радиальной симметрии идёт речь, когда через трёхмерное существо проходят две или более плоскости симметрии. Эти плоскости пересекаются в прямой. Если животное будет вращаться вокруг этой оси на определённый градус, то оно будет отображаться само на себе. В двухмерной проекции радиальная симметрия может сохраняться, если ось симметрии направлена перпендикулярно к проекционной плоскости. Иными словами, сохранение радиальной симметрии зависит от угла наблюдения.При радиальной или лучистой симметрии тело имеет форму короткого или длинного цилиндра либо сосуда с центральной осью, от которого отходят в радиальном порядке части тела. Среди них встречается так называемая пентасимметрия, базирующаяся на пяти плоскостях симметрии.Радиальная симметрия характерна для многих стрекающих, а также для большинства иглокожих, кишечнополостных. Взрослые формы иглокожих приближаются к радиальной симметрии, в то время как их личинки билатерально симметричны.Лучевую симметрию мы также видим у медуз, кораллов, актиний, морских звёзд. Если вращать их вокруг собственной оси, они несколько раз «совместятся сами с собой». Если отрезать у морской звезды любое из пяти щупалец, оно сумеет восстановить всю звезду. От радиальной симметрии различаются двулучевая радиальная симметрия (две плоскости симметрии, к примеру, гребневики), а также билатеральная симметрия (одна плоскость симметрии, к примеру, двусторонне-симметричные).При билатеральной симметрии осей симметрии три, но симметричных сторон только одна пара. Потому что две другие стороны - брюшная и спинная - друг на друга не похожи. Этот вид симметрии характерен для большинства животных, в том числе насекомых, рыб, земноводных, рептилий, птиц, млекопитающих. Например, черви, членистоногие, позвоночные. У большинства многоклеточных (у человека в том числе) другой тип симметрии - двусторонняя. Левая половина их тела -- это как бы «отражённая в зеркале правая». Этот принцип, однако, не относится к отдельным внутренним органам, что демонстрирует, например, расположение печени или сердца у человека. Плоский червь планария имеет двустороннюю симметрию. Если разрезать его вдоль оси тела или поперёк, из обеих половинок вырастут новые черви. Если же измельчить планарию как-нибудь иначе -- скорее всего ничего не выйдет.Можно сказать также, что каждое животное (будь то насекомое, рыба или птица) состоит из двух энантиоморфов - правой и левой половин. Энантиоморфы - пара зеркально асимметричных объектов (фигур), являющихся зеркальным изображением один другого (например, пара перчаток). Иными словами - это объект и его зазеркальный двойник при условии, что сам объект зеркально асимметричен.Сферическая симметрия имеет место у радиолярий и солнечников, тело которых сферической формы, а его части распределены вокруг центра сферы и отходят от неё. У таких организмов нет ни передней, ни задней, ни боковых частей тела, любая плоскость, проведённая через центр, делит животное на одинаковые половинки. Губки и пластинчатые не проявляют симметрию.4) Человек - существо симметричноеНе станем пока разбираться, существует ли на самом деле абсолютно симметричный человек. У каждого, разумеется, обнаружится родинка, прядь волос или какая-нибудь другая деталь, нарушающая внешнюю симметрию. Левый глаз никогда не бывает в точности таким, как правый, да и уголки рта находятся на разной высоте, во всяком случае, у большинства людей. И всё же это лишь мелкие несоответствия. Никто не усомнится, что внешне человек построен симметрично: левой руке всегда соответствует правая и обе руки совершенно одинаковы! Если бы наши руки и в самом деле были совершенно одинаковы, мы могли бы в любой момент поменять их. Было бы возможно, скажем, путем трансплантации пересадить левую ладонь на правую руку, или, проще, левая перчатка подходила бы тогда к правой руке, но на самом деле это не так. Каждому известно, что сходство между нашими руками, ушами, глазами и другими частями тела такое же, как между предметом и его отражением в зеркале. Многие художники обращали пристальное внимание на симметрию и пропорции человеческого тела, во всяком случае, до тех пор, пока ими руководило желание в своих произведениях как можно точнее следовать природе.Известны каноны пропорций, составленные Альбрехтом Дюрером и Леонардо да Винчи. Согласно этим канонам, человеческое тело не только симметрично, но и пропорционально. Леонардо открыл, что тело вписывается в круг и в квадрат. Дюрер занимался поисками единой меры, которая находилась бы в определенном соотношении с длиной туловища или ноги (такой мерой он считал длину руки до локтя). В современных школах живописи в качестве единой меры чаще всего принимается размер головы по вертикали. С известным допущением можно считать, что длина туловища превосходит размер головы в восемь раз. На первый взгляд это кажется странным. Но нельзя забывать, что большинство высоких людей отличаются удлинённым черепом и, наоборот, редко можно встретить низкорослого толстяка с головой удлинённой формы. Размеру головы пропорциональна не только длина туловища, но и размеры других частей тела. По этому принципу построены все люди, оттого-то мы, в общем, похожи друг на друга. Однако наши пропорции согласуются лишь приблизительно, а потому люди лишь похожи, но не одинаковы. Во всяком случае, все мы симметричны! К тому же некоторые художники в своих произведениях особенно подчёркивают эту симметрию. И в одежде человек тоже, как правило, старается поддерживать впечатление симметричности: правый рукав соответствует левому, правая штанина -- левой. Пуговицы на куртке и на рубашке сидят ровно посередине, а если и отступают от нее, то на симметричные расстояния. Но на фоне этой общей симметрии в мелких деталях мы умышленно допускаем асимметрию, например, расчесывая волосы на косой пробор -- слева или справа или делая асимметричную стрижку. Или, скажем, помещая на костюме асимметричный кармашек на груди. Или, надев кольцо на безымянный палец только одной руки. Лишь на одной стороне груди носятся ордена и значки (чаще на левой). Полная безукоризненная симметрия выглядела бы нестерпимо скучно. Именно небольшие отклонения от неё и придают характерные, индивидуальные черты.И вместе с тем порой человек старается подчеркнуть, усилить различие между левым и правым. В средние века мужчины одно время щеголяли в панталонах со штанинами разных цветов (например, одной красной, а другой черной или белой). В не столь отдалённые дни были популярны джинсы с яркими заплатами или цветными разводами. Но подобная мода всегда недолговечна. Лишь тактичные, скромные отклонения от симметрии остаются на долгие времена.3. Симметрия в неживой природе1) Симметрия кристалловЕщё более ярко и систематически симметричность структуры материи обнаруживается в неживой природе, а именно в кристаллах. «Кристаллы блещут симметрией», - писал Е. С. Федоров в своём «Курсе кристаллографии». При слове «кристалл» в воображении рисуется первый среди драгоценных камней - алмаз: «кристальная» чистота и прозрачность, чудесная, непередаваемая игра света, идеальная, правильная форма. Но теперь алмазы не только предмет роскоши. Сегодня они служат для обработки наиболее твёрдых металлов и сплавов. Без них не мыслится современная металлообрабатывающая промышленность.Оказывается, не только алмаз кристалл. Обычный сахар и поваренная соль, лёд и песок состоят из множества кристалликов. Больше того, основная масса горных пород, образующих земную кору, состоит из кристаллов. Даже обыкновенная глина представляет собой нагромождение мельчайших кристалликов. Словом, большинство строительных материалов - металлы, камень, песок, глина - кристаллические вещества. Можно сказать, что мы живём в домах, построенных из кристаллов. Неудивительно, что кристаллы являются предметом тщательного изучения. Кристаллы - это твердые тела, имеющие естественную форму многогранника. Для каждого данного вещества существует своя, присущая только ему одному, идеальная форма его кристалла. Эта форма обладает свойством симметрии, т.е. свойством кристаллов совмещаться с собой в различных положениях путём поворотов, отражений, параллельных переносов. Характерная особенность того или иного вещества состоит в постоянстве углов между соответственными гранями и рёбрами для всех образцов кристаллов одного и того же вещества. Что же касается формы граней, числа граней и рёбер и величины кристалла, то для одного и того же вещества они могут значительно отличаться друг от друга.Нам известны некоторые элементы симметрии: оси симметрии, плоскости симметрии, центр симметрии, зеркальные оси. Кристалл каждого вещества характеризуется определённым набором элементов симметрии - видом (классом) симметрии. Внутреннее устройство кристалла представляется в виде так называемой пространственной решетки, в одинаковых ячейках которой, имеющих форму параллелепипедов, размещены по законам симметрии одинаковые мельчайшие материальные частицы - молекулы, атомы, ионы или их группы.Сама правильность формы кристаллов, тесно связана с их решетчатым строением, т. е. в конечном счёте, определяется симметрией их структуры.Следует признать, что значение симметрии в кристаллах, где она играет роль своеобразного закона формообразования, шире, чем в живой природе, в которой она выступает как некая очевидная, но недостаточно последовательно выраженная тенденция.2) Симметрия в архитектуреПринцип симметрии играет важную роль и в архитектуре. «Архитектура - по словам Н.В. Гоголя - это летопись мира». Она несет в себе уникальную информацию о жизни людей в давно прошедшие исторические эпохи.Термин «симметрия» в разные исторические эпохи использовался для обозначения разных понятий. Для греков симметрия означала соразмерность. Считалось, что две величины являются соразмерными, если существует третья величина, на которую эти две величины делятся без остатка. Здание (или статуя) считалось симметричным, если оно имело какую-то легко различимую часть, такую, что размеры всех остальных частей получались умножением этой части на целые числа, и таким образом исходная часть служила видимым и понятным модулем. Ещё в Древности греки строили пирамиды строго симметрично. Те же развалины Парфенона на Акрополе служат доказательством этого.Симметрия в Средневековье присутствовала в романском стиле (сооружения в форме креста), в готике (архитектурные конструкции имели прямоугольный или крестообразный вид). На смену готике пришёл стиль «барокко», который использовал асимметрию. Но смену этому стилю приходит «классицизм» - самый симметричный из всех известных стилей. Практически поворот на 180 градусов произошел при смене классицизма модерном. Стиль «модерн» использует асимметрию - волнообразное построение архитектурных композиций. В настоящее время каких-либо стилей нет, каждый архитектор работает в своей манере.Композиция в русской традиционной архитектуре в значительной степени основывалась на специфическом применении симметрии, широко применялись как классическая, так и неклассические симметрии. Применение симметрии основывалось на особенностях зрительного восприятия сооружений в натуре. Поэтому на чертежах и планах симметрия может отсутствовать.В искусстве симметрия играет огромную роль, многие шедевры архитектуры обладают симметрией. При этом обычно имеется в виду зеркальная симметрия.Немалую роль симметрия играет в архитектурной композиции -- закономерное расположение частей формы относительно друг друга. История архитектуры полна всеми видами симметричных преобразований, основными из которых являются отражение, поворот и перенос. В вопросе о симметрии архитектурного сооружения важно помнить, что сама функция постройки часто диктует симметричность или асимметричность построения. Так зрелищные сооружения (цирки, театры), мемориальные комплексы и другие архитектурные композиции, где есть явно выраженный главный функциональный элемент (сцена, главный монумент) тяготеют к симметричности, к организованности пространства вокруг этого главного элемента. И вовсе не случайно строго симметричные сооружения использовались для воплощения идей строгой централизации общества и строгого упорядочения устройства мира (Мавзолей В.И. Ленина в Москве)9). Напротив, сложные в функциональном отношении сооружения требуют свободного, асимметричного расположения элементов, т.к. симметричное построение композиции трудно осуществимо. Например, никогда еще не удавалось уложить в строгую симметричную схему такое многофункциональное сооружение, как город. В этих случаях применяют в архитектуре асимметрию. Средством создания единства в асимметричных композициях является зрительное равновесие частей по массе, фактуре, цвету и пр. В сложных композициях могут сочетаться симметрия и асимметрия.В конкретном архитектурном сооружении зрительное восприятие симметрии достигается выявлением плоскостей или осей симметрии. Для этого на них ставятся акценты -- особо значимые элементы (купола, шпили, шатры, парадные входы и лестницы, балконы и эркеры). Но архитектор - прежде всего художник. И потому даже самые «классические» стили чаще использовали дисимметрию - нюансное отклонение от чистой симметрии или асимметрию - нарочито несимметричное построение. При этом довольно трудной задачей является зрительное (тектоническое) уравновешивание масс - объёмов и пространств. В симметричной композиции такое равновесие достигается само собой.

Список литературы

1. Карасев В.П. Симметрия в физике. М.: «Знание», 1978. 63 с.
2. Девис П. Суперсила (поиски единой теории природы). М., 1989. 123 с.
3. Овчинников Н.Ф. Философские проблемы классической и неклассической физики. Современная интерпретация. М.: ИФРАН, 1998. С. 79 - 98
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00476
© Рефератбанк, 2002 - 2024