Вход

Метеорологические аспекты круговорота воды в атмосфере

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 290236
Дата создания 03 августа 2014
Страниц 29
Мы сможем обработать ваш заказ (!) 18 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 110руб.
КУПИТЬ

Описание

... ...

Содержание

ВВЕДЕНИЕ………………………………………………………………………………3
1. Физические свойства льда, воды и водяного пара……………………………..4
2. Cтруктура и взаимосвязь различных звеньев гидрологического цикла……...5
3. Общие условия фазовых переходов воды в атмосфере ……………………...11
3.1 Испарение……………………………………………………………………11
3.2 Конденсация…………………………………………………………………13
4. Факторы, влияющие на фазовые переходы воды, cвязанные со свойствами испаряющей среды……………………………………………………………...13
5. Облака…………………………………………………………………....……....18
5.1 Классификация облаков по условиям образования……………………….19
5.2Морфологическая классификация облаков………………………………...20
ЗАКЛЮЧЕНИЕ…………………………………………………………………………26
ПРИЛОЖЕНИЕ…………………………………………………………………………27

Введение

Круговорот воды в природе (гидрологический цикл) — процесс циклического перемещения воды в земной биосфере. Круговорот воды на Земле, называемый также гидрологическим циклом, включает поступление воды в атмосферу при испарении и возвращение ее назад в результате конденсации и выпадения осадков.
Запасы воды на Земле составляют 1,4 млрд. км³. Это Мировой океан, внутренние воды материков (реки, озёра, болота, ледники и подземные воды) и содержащийся в воздухе водяной пар.
Вся вода на Земле и в атмосфере находится в непрерывном движении, т.е. круговороте. В ходе этого движения вода может изменять своё состояние – переходить из жидкого в твёрдое или в газообразное состояние.
Общее количество находящейся в круговороте воды остаётся более менее постоянным, но в отдельных регионах оно может значи тельно изменяться.
Различают несколько видов круговоротов воды в природе:
1. Большой, или мировой, круговорот — водяной пар, образовавшийся над поверхностью океанов, переносится ветрами на материки, выпадает там в виде атмосферных осадков и возвращается в океан в виде стока. В этом процессе изменяется качество воды: при испарении соленая морская вода превращается в пресную, а загрязненная — очищается.
2. Малый, или океанический, круговорот — водяной пар, образовавшийся над поверхностью океана, сконденсируется и выпадает в виде осадков снова в океан.
3. Внутриконтинентальный круговорот — вода, которая испарилась над поверхностью суши, опять выпадают на сушу в виде атмосферных осадков.
В общих чертах круговорот воды всегда состоит из испарения, конденсации и осадков. Но он включает три основные "петли":
А) поверхностного стока: вода становится частью поверхностных вод;
Б) испарения - транспирации: вода впитывается почвой, удерживается в качестве капиллярной воды, а затем возвращается в атмосферу, испаряясь с поверхности земли, или же поглощается растениями и выделяется в виде паров при транспирации;
В) грунтовых вод: вода попадает под землю и движется сквозь нее, питая колодцы и родники и таким образом вновь попадая в систему поверхностных вод.
Согласно схеме круговорота воды, фонд воды в атмосфере невелик; скорость оборота выше, а время пребывания меньше, чем для углекислого газа. На круговороте воды начинают сказываться глобальные последствия деятельности человека. Учет осадков и речного стока во всем мире сейчас хорошо поставлен; необходимо, однако, как можно быстрее наладить более полный контроль всех основных путей движения воды в круговороте. Следует подчеркнуть два других аспекта круговорота воды.
Отметим, что море теряет из-за испарения больше воды, чем получает с осадками; на суше положение обратное. Другими словами, та часть осадков, которая поддерживает наземные экосистемы, включая и поставляющие пищу человеку, приходит благодаря испарению с моря. Установлено, что во многих областях 90% осадков приносится с моря
Согласно оценкам, вес воды пресных озер и рек - 0,25 геограмма (1геограмм=1020 г), а годовой сток - 0,2 геограмма; следовательно, время оборота составляет около года. Разность между количеством осадков за год (1,0 геограмм) и стоком (0,2 геограмма) составляет 0,8; это и есть величина годового поступления воды в подпочвенные водоносные горизонты. Как уже указывалось, увеличение стока в результате деятельности человека может уменьшить очень важный для круговорота фонд грунтовых вод. Нам следовало бы возвращать больше воды в водоносные слои, не пытаясь хранить ее всю в озерах, откуда она быстрее испаряется

Фрагмент работы для ознакомления

Атмосфера является наиболее подвижным компонентом ГЦ. Так, характерная скорость переноса атмосферной влаги на поря док больше скорости движения речных вод и на два порядка— типичной скорости океанских течений. В соответствии с этим период полного возобновления атмосферной влаги составляет 7—9 сут, что значительно меньше, чем в других резервуарах. Разумеется, здесь перечислены далеко не все специфические особенности атмосферы, но даже они наглядно свидетельствуют о большом значении атмосферных процессов для познания внутренних закономерностей̆ движения воды в крупномасштабных гидрологических системах. Поэтому, рассматривая относительную значимость отдельных резервуаров, можно вполне определенно утверждать, что атмосферное звено играет центральную роль в ГЦ, а следовательно, проблема изучения атмосферного водного баланса является центральной̆ в крупномасштабных исследованиях ГЦ. С другой̆ стороны, нельзя не отметить огромной̆ роли океана в поддержании ГГЦ. Он является самым большим резервуаром природных вод, главной̆ причиной̆ существования круговорота влаги на земном шаре и основным поставщиком энергии для атмосферы (через испарение). Кроме того, океан вследствие превышения испарения над осадками предопределяет существование водных ресурсов (речного стока) на континентах и ледникового стока с Антарктиды и Гренландии. Поэтому изучение водного баланса системы океан— атмосфера также следует отнести к числу главнейших приоритетов в исследованиях ГГЦ. Общие условия фазовых переходов воды в атмосфере В отличие от других газов, составляющих атмосферу, водяной пар при наблюдающихся в атмосфере температурах может изменять свое агрегатное состояние, переходя в жидкое (вода) или твердое (лед) состояние. При этом капли воды и кристаллы льда могут находиться вблизи друг от друга, как это наблюдается в облаках, где происходят процессы таяния и испарения кристаллов льда, замерзания и испарения капель, конденсации и сублимации пара. В этих случаях пар, жидкая вода и лед представляют собой различные фазы воды, т. е. физически однородные части системы, способные переходить друг в друга, причем пар является газообразной, капли воды — жидкой и кристаллы льда — твердой фазами водыИспарение Испарение - это процесс, в результате которого вода из океана или с поверхности Земли поступает в атмосферу. Тот же процесс, при котором испарение происходит с поверхности зеленых растений, называется транспирацией, а если молекулы воды переходят в газообразное состояние непосредственно с поверхности льда, то такой процесс называется возгонкой (сублимацией). Пары воды, которые в результате этих процессов пополняют количество газов, находящихся в атмосфере, увеличивают атмосферное давление. Рассмотрим "закрытый сосуд, первоначально наполовину наполненный водой, над которой располагается сухой воздух, не содержащий паров воды. Молекулы воды находятся в хаотическом движении, кинетическая энергия которого зависит от температуры воды. Молекулы будут сталкиваться друг с другом, передавая друг другу часть энергии, и некоторые из них, находящиеся около поверхности жидкости, могут развить достаточную скорость, чтобы разорвать силы связи с другими молекулами воды и перейти в газообразную форму - водяной пар. Если уровень воды в сосуде поддерживать постоянным при помощи другого сообщающегося сосуда, объем, занимаемый воздухом, будет также оставаться неизменным, а масса воздуха будет увеличиваться за счет водяного пара, что приведет к увеличению давления, оказываемого воздухом на стенки сосуда. Та часть общего давления, которая обусловлена водяным паром, называется упругостью пара. Этот способ очень удобен для определения количества водяных паров, присутствующих в данном объеме воздуха. Альтернативным является так называемое отношение смеси влажного воздуха, то есть отношение массы водяного пара к массе сухого воздуха. Молекулы водяного пара могут быстро двигаться в воздухе над поверхностью жидкости, при этом часть из них будет ударяться о жидкость и захватываться ею, переходя в жидкое состояние. Этот процесс называется конденсацией. Если систему оставить в таком состоянии на довольно длительное время, в ней установится равновесие, при котором процессы конденсации и испарения уравновесят друг друга; при этом количество водяного пара в воздухе будет оставаться постоянным. В таких случаях говорят, что воздух насыщен водяным паром; давление, которое при этом оказывают пары воды, называют упругостью насыщенного пара по отношению к водной поверхности. Поскольку кинетическая энергия молекул воды определяется температурой, упругость насыщенного пара также сильно зависит от температуры и с ее повышением все более и более увеличивается. Ниже 0°С упругость насыщенного пара меньше над поверхностью льда, чем над поверхностью переохлажденной воды. (Воду можно охладить ниже 0°С, и при этом она не начнет замерзать, если в ней нет частиц, которые будут служить ядрами кристаллизации) В том случае, если не существует поверхности, на которой может происходить конденсация водяного пара, воздух станет перенасыщенным, но все же сохранит содержащееся в нем количество водяного пара. Еще две характеристики количества водяных паров, присутствующих в единице объема воздуха, которые указывают на температуру, при которой будет происходить конденсация и на дополнительное количество водяного пара, которое может содержать воздух. Первая из этих характеристик называется температурой точки росы. Она определяется как температура. при которой некоторый объем воздуха - охлаждающийся при постоянном давлении, достигает состояния насыщения по отношению к воде.Конденсация В атмосфере над поверхностью воды или льда присутствует множество загрязняющих ее частиц, таких, как кристаллы соли, образовавшиеся при испарении брызг воды, пыль, занесенная из пустынь или образовавшаяся в результате вулканических извержений, а также частички от дыма пожаров. Эти частицы, на которых происходит конденсация, называются ядрами конденсации. Они различаются по своей способности вызывать конденсацию, но обычно в атмосфере бывает все же достаточное количество частиц, чтобы началась конденсация, как только влажность воздуха превысит 100%. Ядра, на которых происходит конденсация, даже если относительная влажность еще не достигла 100%, называются гигроскопическими ядрами. Это обычно растворимые соли или загрязняющие частицы индустриального происхождения. Конденсация также может происходить на поверхности земли в виде росы или, если температура опускается ниже 0°С и происходит сублимация, в виде инея. Насыщение воздуха водяным паром, приводящее к конденсации, обычно происходит при его охлаждении. Чаще насыщение воздуха водяным паром происходит при охлаждении, которое может произойти на контакте с холодной поверхностью или же при подъеме воздуха вверх. В том случае, если воздух соприкасается с поверхностью, температура которой ниже его точки росы, и находится почти без движения, будет образовываться роса или иней. Но если поднимется слабый ветер, охлажденный воздух будет перемешиваться в тонком поверхностном слое. При достаточном охлаждении весь этот слой насыщается водяным паром, в результате чего образуется туман. Факторы, влияющие на фазовые переходы воды, cвязанные со свойствами испаряющей среды Поток водяного пара зависит от разности между парциальным давлением насыщенного пара непосредственно у поверхности воды или суши (E1) и парциальным давлением пара, содержащегося в воздухе на некотором удалении от поверхности (е). Если E1— е> 0 , то происходит перенос пара от поверхности воды в воздух — испарение; если E1— е<0, то, наоборот, преобладает поступление пара из воздуха на поверхность водоема (суши)—конденсация или сублимация пара. При E1 — е = 0 наблюдается динамическое равновесие потоков к поверхности водоема (суши) и от нее. Величину d= E1 — е называют дефицитом насыщения, рассчитанным по температуре испаряющей поверхности. Характер процесса (испарение или конденсация) можно определить также и по равновесной относительной влажности fp (%) сопоставляя последнюю с относительной влажностью воздуха. Под равновесной относительной влажностью понимается влажность, при которой устанавливается динамическое равновесие систем.fp= QUOTE *100где E1 — давление насыщенного водяного пара в тонком слое над поверхностью воды (льда), определяемое по температуре испаряющей поверхности с учетом ее фазового состояния, наличия примесей, кривизны испаряющей поверхности и электрических зарядов; Е — давление насыщенного водяного пара над плоской поверхностью чистой воды, определяемое по температуре воздуха. При отрицательных температурах Е берется по отношению к воде. Если f < fp, то осуществляется испарение, если f >fp — конденсация, если f = fp,то наступает динамическое равновесие фаз. Влияние факторов, определяющих испарение и связанных со свойствами испаряющей среды, проявляется через изменение давления насыщенного пара в тонком слое воздуха, прилегающем к испаряющей поверхности. Изменение давления насыщенного пара dE в зависимости от изменения температуры dT выражается уравнением Клаузиуса— Клапейрона QUOTE где Сi-2 — удельная теплота перехода из одного фазового состояния в другое, QUOTE — удельные объемы воды в различных агрегатных состояниях Для определения E = f(T) можно использовать уравнение Клаузиуса—Клапейрона, а также эмпирические формулы Магнуса, позволяющие вычислить парциальное давление насыщенного водяного пара над водой и над льдом : Если известно давление насыщенного пара над плоской поверхностью чистой воды, то для расчета давления насыщенного пара над плоской поверхностью чистого льда при разных температурах можно использовать формулу : Зависимость давления насыщенного пара от кривизны испаряющей поверхности описывается формулой Томсона: где Ег—давление насыщенного водяного пара над каплей или капилляром радиусом r,ơ — коэффициент поверхностного натяжения на границе вода—водяной пар, или поверхностная энергия; ƍк — плотность воды; г — радиус кривизны поверхности; Т — температура воздуха (К). Эту формулу можно преобразовать к виду: где Сr = 2ơ/RƍKT — величина, которую практически можно считать постоянной и равной 1,2*10-7 .Совместное влияние кривизны и фазового состояния на давление насыщенного водяного пара можно описать выражением : Зависимость давления насыщенного пара от наличия примесей в воде, согласно закону Рауля, имеет вид: где n — число молей растворенного вещества, N — число молей растворителя. Закон Рауля получен для растворов неэлектролитов малой концентрации. Формула при условии N>>n может быть записана в виде: Для растворов электролитов со значительной концентрацией учитывается степень диссоциации молекул на ионы: где i — коэффициент Вант-Гоффа. Однако и с учетом диссоциации закон Рауля для насыщенного раствора солей дает расхождение с экспериментальными данными на 10—15 %. Давление насыщенного пара над каплями растворов зависит от наличия примесей солей и кривизны: где r и r0 — радиусы капель с ненасыщенным и насыщенным растворами соли соответственно; Cр = (∆Ep ) нас/Е - определяемый экспериментально коэффициент, характеризующий уменьшение давления насыщенного пара над насыщенным раствором вещества, который для основных ядер конденсации в атмосфере имеет следующие значения: Зависимость упругости насыщения от кривизны и электричесzких зарядов капель определяется формулой Томсона: где Сq для единичного элементарного заряда и температуры О °С равно 7,5*10-30 см4 , ν — число единичных зарядов на поверхности капли. В начальный момент, когда капля представляет насыщенный раствор и ее радиус равен r0, упругость пара над каплей может быть меньше Е для ядер конденсации, и конденсация начнется при влажности ниже 100%. При увеличении начального радиуса (r равен r0) относительно влажность, для начала конденсации, уменьшается. Таким образом, для конденсации водяного пара в атмосфере необходимо, что бы концентрация пара в воздухе была больше, чем над поверхностью образующихся частичек воды, и что бы в воздухе имелись мельчайшие частички, которые могли бы служить ядрами конденсации. Эти условия являются необходимыми для конденсации, но недостаточными для образования облачных капель, т.к. в ненасыщенном воздухе на гигроскопических ядрах могут образоваться лишь зародышевые капли. Для роста зародышевой капли и перехода ее в облачную требуется, что бы упругость пара в воздухе была больше, чем необходимо для их возникновения. Это соответствует пресыщению ,= 103% моей капли, и капля жизнеспособна. Известно, что теория фазовых переходов воды в атмосфере разработана еще не полностью; в особой степени это относится к сильнозагрязненной атмосфере. Поскольку загрязненность атмосферы непрерывно возрастает, как по ее уровню, так и по степени географической распространенности, то попытки рассматривать загрязнение как некий новый метеорологический феномен, влияющий качественно и количественно на протекание ряда физических процессов в ее нижних слоях, вполне правомерны. Наибольший интерес к настоящему времени, в связи с возрастающим загрязнением атмосферы, представляет изучение условий переноса в ней лучистой энергии, качества (состава) атмосферного воздуха и условий конденсации водяного пара и ,отчасти, условий замерзания жидкой фазы воды.Облака Облака представляют собой одно из интереснейших явлений природы. Среди тех величин и явлений, которые объединятся понятием «погода»,облакам и связанным с ними осадкам принадлежит определяющая роль. Изменяя тепловой и радиационный режим атмосферы, облака оказывают большое влияние на многие стороны деятельности человека (прежде всего, в сфере сельскохозяйственного производства),а также на растительный и животный мир Земли. Велика зависимость от облаков, туманов и осадков различных видов транспорта, в первую очередь авиации. Облаком называют видимую совокупность взвешенных капель воды и кристаллов льда, находящихся на некоторой высоте над земной поверхностью. С точки зрения микрофизического строения принципиальной разницы между облаками и туманом нет. Однако они существенно различаются по условиям образования, вертикальной протяженности и т.п. Определяющую роль в формировании поля облаков играют вертикальные движения, или токи воздуха. В зависимости о горизонтальных размеров тех областей, в пределах которых вертикальная скорость (w) сохраняет один и тот же знак ( w>0 или w<0),вертикальные движения принято делить на три класса .Первый класс составляют макромасштабные (пульсационные),второй – мезомасштабные и третий – макромасштабные вертикальные движения. С этой классификацией тесно связано деление облаков по генетическому принципу,т.е. по условиям образования. Согласно этому принципу, облака подразделяются на слоистообразные, волнистообразные и кучевообразные. Под влиянием вертикальных движений синоптического масштаба образуются обширные облачные поля (системы),называемые слоистообразными облаками. К ним относятся слоисто-дождевые (Ns),высокослоистые (As) и перистослоистые (Cs) облака. Горизонтальная протяженность (размер) слоистообразных облаков имеет такой же порядок, что и масштаб синоптических вихрей (циклонов и ложбин). С образованием и развитием слоистообразных облаков тесно связано формирование атмосферных фронтов. Поэтому эти облака называют также фронтальными. При мезомасштабных вертикальных скоростях образуются кучевообразные облака,называемые также конвективными. Их горизонтальная протяженность изменяется от сотен метров до 100 км.

Список литературы

Без списка литературы
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00505
© Рефератбанк, 2002 - 2024