Код | 276267 | ||
Дата создания | 2017 | ||
Страниц | 21 ( 14 шрифт, полуторный интервал ) | ||
Источников | 3 | ||
Файлы
|
|||
Без ожидания: файлы доступны для скачивания сразу после оплаты.
Ручная проверка: файлы открываются и полностью соответствуют описанию. Документ оформлен в соответствии с требованиями ГОСТ.
|
В оборудовании энергосистем изоляция выполняет не только роль диэлектрического барьера между проводниками, работающими при разных потенциалах. В силовых конденсаторах, например, изоляция является той средой, в которой накапливается энергия. В кабелях и других линиях в окружающей проводники изоляции распространяется энергия электромагнитного поля, поэтому от параметров изоляции зависят волновые свойства линий. В коммутационных аппаратах с помощью изоляционных конструкций осуществляется передача механического движения от привода к подвижным контактам, а отдельные диэлектрики играют роль дугогасящей среды. Во всех случаях изоляционные конструкции служат для механического крепления проводников, через них отводится тепло от токоведущих частей, а иногда и от мaгнитопроводов.
Конструкция изоляции оборудования высокого напряжения определяется многими факторами: выполняемыми ею функциями, устройством и технологией изготовления отдельных деталей и узлов оборудования, режимами и условиями работы, определяющими требования к электрической и механической прочности, нагревостойкости, сроками службы и т.д., а также стоимостью и технологическими свойствами изоляционных материалов.
Требования к кратковременной электрической прочности изоляционных конструкций в виде величин испытательных напряжений устанавливают путем анализа возможных перенапряжений. Необходимая длительная электрическая прочность определяется по существу наибольшим рабочим напряжением и требуемым сроком службы оборудования. Чтобы обеспечить длительную электрическую прочность изоляции, на основании специальных исследований и опыта эксплуатации устанавливают допустимые значения мощности ЧР (частичные разряды) и других параметров, косвенно характеризующих способность изоляции длительно выдерживать воздействие рабочего напряжения.
При определении требований к механической прочности изоляционных конструкций отдельно учитывают статические нагрузки (массу поддерживаемых деталей, давление газов или жидкостей, заполняющих внутренний объем, и т. д.), ударные нагрузки от электродинамических усилий при прохождении токов короткого замыкания, от движения контактов или от повышения давления при гашении дуги, а также длительную вибрацию.
К числу тепловых воздействий, влияющих на выбор конструкции и материалов изоляции, относятся длительные нагревы в номинальных режимах работы, кратковременные эпизодические повышения температуры, обусловленные большими тепловыделениями при прохождении токов внешних коротких замыканий, а также циклические нагревы и остывания, если оборудование может работать с периодически меняющейся нагрузкой. Большое значение при этом имеет состав окружающей среды, т.е. наличие в воздухе влаги и химически активных примесей.
В ряде случаев приходится учитывать специфические воздействия на изоляцию, например, для оборудования, работающего в тропических условиях, - повышенную солнечную радиацию и деятельность некоторых микроорганизмов.
1 Изоляция электрических машин высокого напряжения. Общие сведения
К электрическим машинам высокого напряжения относятся турбо- и гидрогенераторы, синхронные компенсаторы и двигатели большой мощности с номинальным напряжением 3 кВ и выше. Как источники энергии или приводы крупных агрегатов они выполняют исключительно важные функции в энергосистемах и на промышленных предприятиях, поэтому к машинам высокого напряжения в целом и к их изоляции в частности предъявляются очень высокие требования в отношении надежности и сроков службы.
Номинальные напряжения генераторов в настоящее время достигают 20 кВ. При современной тенденции увеличения единичных мощностей генераторов до 1000 МВт и более, номинальное напряжение 20 кВ оказывается уже недостаточным, так как из-за огромных рабочих токов осуществление передачи энергии от генератора к трансформатору становится крайне затруднительным. Однако повышение номинальных напряжений генераторов без ухудшения остальных технико-экономических показателей представляет собой очень сложную проблему.
...
2 Конструкция изоляции электрических машин
Изоляция статорных обмоток электрических машин подразделяется на главную (корпусную) и продольную. Главной называется изоляция между проводниками обмотки и корпусом. Она имеет разную конструкцию на пазовых и лобовых частях катушек, а также на выводах (линейных и у нейтрали). К продольной относится изоляция между витками одной катушки, т. е. междувитковая (у стержневых обмоток отсутствует), а также изоляция между уложенными в одном пазу катушками.
Междувитковой изоляцией, а также изоляцией между элементарными проводниками обычно служит собственная изоляция обмоточных проводов. В зависимости от типа обмоточного провода она представляет собой три слоя лавсановой пленки, покрытых слоем хлопчатобумажной пряжи (ППЛБО), или два слоя стеклоленты, пропитанных нагревостойким лаком (ПСД), или дельта-асбестовую изоляцию (ПДА).
...
Таблица 1 - Толщина корпусной изоляции двухслойных статорных обмоток генераторов на напряжение 3,15 – 18 кВ.
...
3 Электрическая прочность изоляции
В лобовых частях главной изоляции старение происходит неравномерно: наиболее интенсивно в местах выхода катушек (стержней) из пазов статора на расстоянии до 50 мм от пакетов стали статора вследствие более интенсивных вибраций и больших напряженностей электрического поля. Старение пазовых участков также происходит неравномерно: электрическому старению более интенсивно подвергается изоляция ближайших к выводам катушек, тепловому старению - центральные участки пазовой изоляции.
...