Вход

Этапы образования и развития вселенной.

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 258365
Дата создания 06 сентября 2015
Страниц 20
Мы сможем обработать ваш заказ (!) 25 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
610руб.
КУПИТЬ

Описание

Реферат содержит 4 части кроме введения и заключения:
Историческое развитие представлений о Вселенной Начало Вселенной Рождение сверхгалактик и скоплений галактик Строение Галактик и Вселенной
Список используемой литература

Тема раскрыта. Работа защищена на отлично в Институте Менеджмента СГМУ в 2010 г. ...

Содержание

СОДЕРЖАНИЕ

Введение 3
1. Историческое развитие представлений о Вселенной 4
2. Начало Вселенной 6
3. Рождение сверхгалактик и скоплений галактик 11
4. Строение Галактик и Вселенной 15
Заключение 20
Список используемой литературы 21

Введение

Тысячелетиями человечество обращало свои взгляды на окружающий мир, стремилось постигнуть его, вырваться за пределы микромира в макромир.
Величественная картина небесного купола, усеянного миллиардами звезд, с незапамятных времен волновала ум и воображение ученых, поэтов, каждого живущего на Земле и зачарованного любующегося торжественной и чудной картиной.

Фрагмент работы для ознакомления

Это означает, что к тому моменту, когда возраст Вселенной достиг 10 с., в ней исчезли все мезоны. На этом и кончается адронная эра, потому что пионы являются не только самыми легкими мезонами, но и легчайшими адронами. Никогда после этого сильное взаимодействие (ядерная сила) не проявлялась во Вселенной в такой мере, как в адронную эру, длившуюся всего лишь одну десятитысячную долю секунды.б) Лептонная эра. Когда энергия частиц и фотонов понизилась в пределах от 100 Мэв до 1 Мэв, в веществе было много лептонов. Температура была достаточно высокой, чтобы обеспечить интенсивное возникновение электронов, позитронов и нейтрино. Барионы (протоны и нейтроны), пережившие адронную эру, стали по сравнению с лептонами и фотонами встречаться гораздо реже.Лептонная эра начинается с распада последнихадронов - пионов - в мюоны и мюонное нейтрино, а кончается через несколько секунд при температуре 10K, когда энергия фотонов уменьшилась до 1 Мэв и материализация электронов и позитронов прекратилась. Во время этого этапа начинается независимое существование электронного и мюонного нейтрино, которые мы называем реликтовыми. Всё пространство Вселенной наполнилось огромным количеством реликтовых электронных и мюонных нейтрино. Возникает нейтринное море.в) Фотонная эра или эра излучения. На смену лептонной эры пришла эра излучения, как только температура Вселенной понизилась до 10 K , а энергия гамма фотонов достигла 1 Мэв, произошла только аннигиляция электронов и позитронов. Новые электронно-позитронные пары не могли возникать вследствие материализации, потому, что фотоны не обладали достаточной энергией. Но аннигиляция электронов и позитронов продолжалась дальше, пока давление излучения полностью не отделило вещество от антивещества. Со времени адронной и лептонной эры Вселенная была заполнена фотонами. К концу лептонной эры фотонов было в два миллиарда раз больше, чем протонов и электронов. Важнейшей составной Вселенной после лептонной эры становятся фотоны, причем, не только по количеству, но и по энергии.Для того чтобы можно было сравнивать роль частиц и фотонов во Вселенной, была введена величина плотности энергии. Это количество энергии в 1 куб.см, точнее, среднее количество (исходя из предпосылки, что вещество во Вселенной распределено равномерно). Если сложить вместе энергию hn всех фотонов, присутствующих в 1 куб.см, то мы получим плотность энергии излучения Er . Сумма энергии покоя всех частиц в 1 куб.см является средней энергией вещества Em во Вселенной.Вследствие расширения Вселенной понижалась плотность энергии фотонов и частиц. С увеличением расстояния во Вселенной в два раза, объём увеличился в восемь раз. Иными словами, плотность частиц и фотонов понизилась в восемь раз. Но фотоны в процессе расширения ведут себя иначе, чем частицы. В то время как энергия покоя во время расширения Вселенной не меняется, энергия фотонов при расширении уменьшается. Фотоны понижают свою частоту колебания, словно устают со временем. Вследствие этого плотность энергии фотонов (Er) падает быстрее, чем плотность энергии частиц (Em). Преобладание во вселенной фотонной составной над составной частиц (имеется в виду плотность энергии) на протяжении эры излучения уменьшалось до тех пор, пока не исчезло полностью. К этому моменту обе составные пришли в равновесие (то есть ErEm). Кончается эра излучения и вместе с этим период большого взрыва. Так выглядела Вселенная в возрасте примерно 300 000 лет. Расстояния в тот период были в тысячу раз короче, чем в настоящее время.Большой взрыв продолжался сравнительно недолго, всего лишь одну тридцатитысячную нынешнего возраста Вселенной. Несмотря на краткость срока, это всё же была самая славная эра Вселенной. Никогда после этого эволюция Вселенной не была столь стремительна, как в самом её начале, во время большого взрыва. Все события во Вселенной в тот период касались свободных элементарных частиц, их превращений, рождения, распада, аннигиляции. Не следует забывать, что в столь короткое время (всего лишь несколько секунд) из богатого разнообразия видов элементарных частиц исчезли почти все одни путем аннигиляции (превращение в гамма-фотоны), иные путем распада на самые легкие барионы (протоны) и на самые легкие заряженные лептоны (электроны). г) Звездная эра. После большого взрыва наступила продолжительная эра вещества, эпоха преобладания частиц. Мы называем её звездной эрой. Она продолжается со времени завершения большого взрыва (приблизительно 300 000 лет) до наших дней. По сравнению с периодом большим взрыва её развитие представляется как будто слишком замедленным. Это происходит по причине низкой плотности и температуры.3. РОЖДЕНИЕ СВЕРХГАЛАКТИК И СКОПЛЕНИЙ ГАЛАКТИКВо время эры излучения продолжалось стремительное расширение космической материи, состоящей из фотонов, среди которых встречались свободные протоны или электроны и крайне редко - альфа-частицы. В период эры излучения протоны и электроны в основном оставались без изменений, уменьшалась только их скорость. С фотонами дело обстояло намного сложнее. Хотя скорость их осталась прежней, в течение эры излучения гамма-фотоны постепенно превращались в фотоны рентгеновские, ультрафиолетовые и фотоны света. Вещество и фотоны к концу эры остыли уже настолько, что к каждому из протонов мог, присоединится один электрон. При этом происходило излучение одного ультрафиолетового фотона (или же нескольких фотонов света) и, таким образом, возник атом водорода. Это была первая система частиц во Вселенной.С возникновением атомов водорода начинается звездная эра - эра частиц, точнее говоря, эра протонов и электронов. Вселенная вступает в звездную эру в форме водородного газа с огромным количеством световых и ультрафиолетовых фотонов. Водородный газ расширялся в различных частях Вселенной с разной скоростью. Неодинаковой была также и его плотность. Он образовывал огромные сгустки, во много миллионов световых лет. Масса таких космических водородных сгустков была в сотни тысяч, а то и в миллионы раз больше, чем масса нашей теперешней Галактики. Расширение газа внутри сгустков шло медленнее, чем расширение разреженного водорода между самими сгущениями. Позднее из отдельных участков с помощью собственного притяжения образовались сверхгалактики и скопления галактик. Итак, крупнейшие структурные единицы Вселенной - сверхгалактики - являются результатом неравномерного распределения водорода, которое происходило на ранних этапах истории Вселенной. Колоссальные водородные сгущения - зародыши сверх галактик и скоплений галактик - медленно вращались. Внутри их образовывались вихри, похожие на водовороты. Их диаметр достигал примерно ста тысяч световых лет. Мы называем эти системы протогалактиками, т.е. зародышами галактик. Несмотря на свои невероятные размеры, вихри протогалактик были всего лишь ничтожной частью сверхгалактик и по размеру не превышали одну тысячную сверхгалактики. Сила гравитации образовывала из этих вихрей системы звезд, которые мы называем галактиками. Некоторые из галактик до сих пор напоминают нам гигантское завихрение.Астрономические исследования показывают, что скорость вращения завихрения предопределила форму галактики, родившейся из этого вихря. Выражаясь научным языком, скорость осевого вращения определяет тип будущей галактики. Из медленно вращающихся вихрей возникли эллиптические галактики, в то время как из быстро вращающихся родились сплющенные спиральные галактики.В результате силы тяготения очень медленно вращающийся вихрь сжимался в шар или несколько сплюснутый эллипсоид. Размеры такого правильного гигантского водородного облака были от нескольких десятков до нескольких сотен тысяч световых лет. Нетрудно определить, какие из водородных атомов вошли в состав рождающейся эллиптической, точнее говоря эллипсоидальной галактики, а какие остались в космическом пространстве вне нее. Если энергия связи сил гравитации атома на периферии превышала его кинетическую энергию, атом становился составной частью галактики. Это условие называется критерием Джинса. С его помощью можно определить, в какой степени зависела масса и величина протогалактики от плотности и температуры водородного газа. Протогалактика, которая вообще не вращалась, становилась родоначальницей шаровой галактики. Сплющенные эллиптические галактики рождались из медленно вращающихся протогалактик. Из-за недостаточной центробежной силы преобладала сила гравитационная. Протогалактика сжималась и плотность водорода в ней возрастала. Как только плотность достигала определенного уровня, начали выделятся и сжимается сгустки водорода. Рождались протозвезды, которые позже эволюционировали в звезды. Рождение всех звезд в шаровой или слегка приплюснутой галактике происходило почти одновременно. Этот процесс продолжался относительно недолго, примерно сто миллионов лет. Это значит, что в эллиптических галактиках все звезды приблизительно одинакового возраста, т.е. очень старые. В эллиптических галактиках весь водород был исчерпан сразу же в самом начале, примерно в первую сотую существования галактики. На протяжении последующих 99 сотых этого периода звезды уже не могли возникать. Таким образом, в эллиптических галактиках количество межзвездного вещества ничтожно.Спиральные галактики, в том числе и наша, состоят из очень старой сферической составляющей (в этом они похожи на эллиптические галактики) и из более молодой плоской составляющей, находящейся в спиральных рукавах. Между этими составляющими существует несколько переходных компонентов разного уровня сплюснутости, разного возраста и скорости вращения. Строение спиральных галактик, таким образом, сложнее и разнообразнее, чем строение эллиптических. Спиральные галактики кроме этого вращаются значительно быстрее, чем галактики эллиптические. Не следует забывать, что они образовались из быстро вращающихся вихрей сверхгалактики. Поэтому в создании спиральных галактик участвовали и гравитационная и центробежная силы.Если бы из нашей галактики через сто миллионов лет после ее возникновения (это время формирования сферической составляющей) улетучился весь межзвездный водород, новые звезды не смогли бы рождаться, и наша галактика стала бы эллиптической.Но межзвездный газ в те далекие времена не улетучился, и, таким образом гравитация и вращение могли продолжать строительство нашей и других спиральных галактик. На каждый атом межзвездного газа действовали две силы - гравитация, притягивающая его к центру галактики и центробежная сила, выталкивающая его по направлению от оси вращения. В конечном итоге газ сжимался по направлению к галактической плоскости. В настоящее время межзвездный газ сконцентрирован к галактической плоскости в весьма тонкий слой. Он сосредоточен прежде всего в спиральных рукавах и представляет собой плоскую или промежуточную составляющую, названную звездным населением второго типа.На каждом этапе сплющивания межзвездного газа во все более утончающийся диск рождались звезды. Поэтому в нашей галактике можно найти, как старые, возникшие примерно десять миллиардов лет назад, так и звезды родившиеся недавно в спиральных рукавах, в так называемых ассоциациях и рассеянных скоплениях. Можно сказать, что чем более сплющена система, в которой родились звезды, тем они моложе.СТРОЕНИЕ ГАЛАКТИК И ВСЕЛЕННОЙЗвезды во Вселенной объединены в гигантские Звездные системы, называемые галактиками. Звездная система. В составе которой, как рядовая звезда находится наше Солнце, называется Галактикой.Число звезд в галактике порядка 10 (триллиона). Млечный путь, светлая серебристая полоса звезд опоясывает всё небо, составляя основную часть нашей Галактики.

Список литературы

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


1. Концепции современного естествознания: Учеб. Пособие / В.В. Горбачев, В.М. Безнадежных.-М.: Эономистъ, 2004
2. Концепции современного естествознания: Учеб. Пособие для студентов вузов.- 3-е изд., испр. и доп./Романов В.П. – М.: Вузовский учебник
3. Концепции современного естествознания:Учебник для вузов./Карпенков С.Х. –М.: Академический проект, 2004
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00359
© Рефератбанк, 2002 - 2024