Вход

Применение акустического каротажа для выделения и оценки коллекторов в условиях Ромашкинского месторождения

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 234287
Дата создания 08 июня 2016
Страниц 73
Мы сможем обработать ваш заказ (!) 23 апреля в 16:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
3 560руб.
КУПИТЬ

Описание

Применение акустического каротажа для выделения и оценки коллекторов в условиях Ромашкинского месторождения. ...

Содержание

Содержание
Введение……………………………………………………………………….4
1.Геолого-геофизическая характеристика района работ
1.1 Эконом географическое положение района……………………………..5
1.2.Характеристика геологического строения…………....………………….5
1.3. Геолого-геофизическая изученность……………..…………………….15
1.4 Полезные ископаемые…………………………………………..………..17
2. Технический раздел
2.1 Аппаратура для проведения исследований в скважине……….……..19
2.2 Техника и методика проведения работ………………….………………25
2.3 Комплекс геофизических методов и акустический каротажа для определения пластов-коллекторов……………………………………..……27
2.4. Теоретические основы используемых геофизических методов…….…33
2.5 Обработка и интерпретация полученных данных…………………...…..42

2.6. Результаты обработки и интерпретации полученных данных…………44
3. Охрана труда и противопожарная защита
3.1. Охрана труда при промыслово – геофизических работах………………48
4. Охрана недр окружающей среды
4.1 Общие требования по охране недр и окружающей среды………………55
4.2 Мероприятия по охране недр и окружающей среды на Ромашкинском месторождении……………………………………………………..…………..61
5. Экономическая часть

5.1. Акт-наряд на выполнение………………………………..……………….64

5.2. Расчёт нормативной продолжительности (трудо¬ёмкости) исследования АКЦ (МАК-2)……………………………………………………………………65

5.3. Расчёт сметной стоимости проведения исследова¬ния АКЦ (МАК-2)…68
Заключение……………………………………………………………………..72
Список использованной литературы…………………………………..………73

Введение

Введение.
Акустический каротаж (АК) основан на изучении полей упругих волн в скважинах и заключается в измерении скорости распространения упругих волн ультразвуковой (УЗ) частоты и их затухания.
Для АК обычно используются так называемые "трехэлементные" зонды, содержащие два излучателя и один приемник упругих волн или, наоборот, два приемника и один излучатель. Излучатели, как правило, магнитострикционного типа, приемники - пьезоэлектрического.
Излучатели периодически посылают пакеты из 3-4 периодов УЗ колебаний с частотой 10-75 кГц с колоколообразной формой огибающей. Частота посылки самих пакетов - 12,5-25,0 Гц.
Упругие импульсы от источников, пройдя через буровой раствор, возбуждают колебания в стенках скважины. Упругие колебания, попадающие на стенку скважины под углом полного внутр еннего отражения, возбуждают в ней скользящую преломленную волну, которая распространяется со скоростью, присущей данной горной породе, достигает приемника. Затухание упругих волн зависит от состава горных пород, пористости и состава флюида в порах (в газе затухание - больше, чем в жидкости), а скорость их распространения - от состава и пористости.
Кроме пористости и характера насыщения, по АК может быть определено положение контактов и мощность пластов, отличающихся по своим акустическим свойствам.

Фрагмент работы для ознакомления

425717545656500рис.3Кинематические и динамические параметры упругих волн, распространяющихся в околоскважинном пространстве, изучают по результатам измерений широкополосного акустического каротажа. Кинематические параметры характеризуют скорость и направление этих волн в породах, динамические затухание энергии и их частотные особенности.Для регистрации этих параметров используют схему, приведенную на рис 4.Расстояние от излучателя до приемника П называется размером (длиной) зонда-L1, L2,расстояние между сближенными одноименными преобразователями-базой зонда l.Информация регистрируется в виде волновых картинок ВК, фазокорреляционных диаграмм (ФКД),и кривых.Волновая картинка-графическое отображение электрического сигнала, снятого с приемника в конкретной точке наблюдения.ФКД-графическое отображение изменения сигнала ,снятых с приемника при его перемещении по скважине, см рис.4 Итервальное время t(измеренное время распространения волны на фиксированной базе L) определяется по формуле t = t2-t1 /L ,мкс/мДля поканальных параметров t1, t2 ,A1, A2, точками записи (рис.4) являются:для первого канала – середина расстояния от ближнего приемника до излучателя (точка О1)для второго - середина расстояния от дальнего приемника до излучателя (точка О2)рис.42.4. Теоретические основы используемых геофизических методовВыделение коллекторов.Породой-коллектором называют породу, способную вмещать нефть, газ или воду и отдавать их при разработке в любых, даже незначительных количествах. Именно такое определение коллектора лежит в основе оценки геологических запасов нефти, газа и конденсата. Выделение коллекторов реализуется по прямым качественным признакам или с использованием количественных критериев, обоснование которых по результатам геологоразведочных работ (ГРР) и эксплуатации будет подробно рассмотрено ниже.Вопросу обоснования количественных критериев всегда уделялось много внимания. При этом количественные критерии коллекторов назывались нижними, абсолютными либо абсолютными нижними пределами фильтрационно-емкостных свойств, геолого-геофизическими кондициями, абсолютными пределами запасов и т.п.Кроме этого выделялась и другая группа количественных критериев, в основу определения которых была положена информация о рентабельных или экономически целесообразных дебитах нефти и газа, т.е. технико-экономические кондиции. Эти критерии имеют разнообразную физикоэкономическую основу и зависят от коэффициентов извлечения УВ и минимальной эффективной толщины hэф коллекторов, их динамической емкости, проницаемости и продуктивности, либо только их продуктивности. Численные значения этих критериев изменяются по мере развития техники и технологии добычи нефти и газа, изменения цен, технологических условий и стандартов на товарную продукцию, создающих условия для экономически оправданного освоения запасов нефти и газа. В некоторых работах к коллекторам относят только те породы, в которых жидкости и газы содержатся в промышленных объемах, а притоки нефти или газа превышают минимальные рентабельные дебиты.Необходимо отметить, что при подсчете геологических запасов применение для выделения коллекторов подходов, базирующихся на технико-экономических критериях, неправомерно. Нельзя применять и способы выделения коллекторов, основанные на использовании любых величин дебитов, т.к. критерии коллектора для них не остаются постоянными. Значения кондиционных пределов в этих способах изменяются во времени и различаются в зависимости от геологических особенностей разреза. Последнее объясняется тем, что при постоянной депрессии один и тот же дебит можно получить при высокой проницаемости и малой толщине пласта либо при его низкой проницаемости и большой толщине. Следовательно, пласты с одинаковыми фильтрационно-емкостными свойствами в разное время и в разных условиях могут быть отнесены к коллекторам и неколлекторам.Еще раз отметим, что при определении геологических запасов УВ к коллекторам относятся породы, способные вмещать нефть, газ или воду и отдавать их при разработке: величина извлекаемых объемов жидкости либо газа и их дебиты при этом не оговариваются. Определенные таким образом коллекторы характеризуются стабильными признаками и критериями и содержат геологические запасы УВ.По условиям образования коллекторы нефти и газа относятся преимущественно к осадочным отложениям, редко к вулканогенным и вулканогенно-осадочным и иногда к изверженным породам кристаллического фундамента. По вещественному составу различают терригенные, карбонатные, вулканогенные коллекторы и их смешанные типы. Известны также коллекторы, связанные с галогенными отложениями, представленными гипсом, ангидритом и смесью галита с карбонатными породами.По морфологии порового пространства коллекторы делятся на поровые (межзерновые, гранулярные), трещинные, каверновые и смешанные (порово-трещинно-каверновые). Наименования последних варьируют в зависимости от вклада отдельных видов пустот в общие емкость и проницаемость коллектора. Большинство терригенных и карбонатных коллекторов поровые. Трещинные коллекторы характерны для плотных метаморфизованных низкопористых пород, прежде всего для карбонатных, частично - для вулканогенных и редко - для терригенных. По-видимому, трещинным является также коллектор, представленный битуминозными аргиллитами, нефть и газ в которых содержатся в трещинах и пространстве между "листочками" аргиллита. Трещин- но-каверновый и порово-трещинно-каверновый коллекторы типичны для карбонатных, а также для вулканогенных отложений и практически не встречаются в терригенных породах.Поровые коллекторы считаются простыми, если они сложены одним породообразующим минералом (за исключением цементирующих веществ) и содержат один тип подвижного флюида (нефть, газ либо воду). К сложным относят коллекторы, обладающие, по крайней мере, одним из следующих признаков:сложным минеральным составом породообразующих веществ, включая высокое содержание глинистых минералов;сложной структурой порового пространства;многофазной насыщенностью в пределах одного пластопересечения.Из-за трудностей количественной оценки по геофизическим данным параметров тонких пластов к сложным коллекторам следует отнести также все коллекторы толщиной менее 1,5 м.При традиционном аппаратурном и методическом обеспечении геофизических исследований все под счетные параметры (эффективная толщина - hэф, коэффициенты пористости - Кп и нефтегазонасыщенности - Кнг) в абсолютном большинстве случаев могут быть определены только в пластах и прослоях толщиной hэф > 1,5 м. В пластах меньшей толщины (1,5 м > hэф > 0,5 м) по материалам ГИС определяют эффективные толщины и коэффициенты пористости; коэффициенты нефтегазонасыщенности могут быть уверенно установлены в отдельных случаях в коллекторах без проникновения или с малой (D/d < 2) глубиной проникновения. Для тонких одиночных пластов (0,5 м > hэф > 0,2 м) по кривым ГИС устанавливается только hэф, количественные определения других параметров практически невозможны.Как уже отмечалось выше, изложенное относится к случаю использования традиционного комплекса ГИС со стандартным разрешением. Применение высокоразрешающих методов ГИС в первую очередь, каротажных акустических и электрических микросканеров (FMS, FMI и др.) позволяет выделять в разрезе пласты толщиной до первых сантиметров. По характеру смачиваемости поверхности твердой фазы различают коллекторы гидрофильные, гидрофобные и частично гидрофобные. У последних лишь часть поверхности твердой фазы избирательно смачивается водой.Еще раз укажем, что выделение коллекторов любого типа проводится с использованием установленных для них прямых качественных признаков или количественных критериев.Прямым качественным признаком коллектора является проникновение фильтрата ПЖ в пласты, которое устанавливается по данным ГИС и является следствием движения пластовых флюидов в поровом пространстве породы. Очевидно, что прямой информацией о наличии коллекторов в разрезе является получение притоков пластовых флюидов при опробовании и испытании пластов, в том числе приборами на каротажном кабеле. Прямые качественные признаки используются как для непосредственного выделения коллекторов в разрезах скважин, так и для обоснования количественных критериев.Под количественными критериями коллекторов понимают величины фильтрационно-емкостных (Kп, Kпp и др.) или соответствующих им геофизических характеристик, по которым на статистическом уровне пласты разделяются на проницаемые и непроницаемые, т.е. на коллекторы и неколлекторы.Определение эффективных газо- и нефтенасыщенных толщин включает выделение коллекторов, оценку характера их насыщенности и положений газонефтяного, водонефтяного или газоводяного контактов (ГНК, ВНК и ГВК соответственно) между пластовыми флюидами.Границы пластов-коллекторов устанавливаются по диаграммам геофизических методов согласно общеизвестным правилам, описанным в учебниках и справочниках по интерпретации, а также в соответствующих руководствах по методам ГИС.Кривые большинства методов ГИС (ПС, БК, ИК, ДК, АК, ЯМК) симметричны. На этих кривых интервалы в которых амплитуда регистрируемого параметра изменяется от значений во вмещающих породах до значения в пласте-коллекторе, равны длине зонда. Границы пласта соответствуют серединам этих интервалов.В методах РК (ГК, НК, ГГК) при применении аппаратуры для аналоговой записи кривые асимметричны, сдвинуты в направлении движения прибора за счет влияния интегрирующей ячейки. Границы пластов толщиной более 1 м необходимо определять по началу крутого подъема и спуска кривой. Вместо этого иногда авторы отчетов с подсчетом запасов допускают отступления от этого правила и проводят границы пластов по середине интервалов спуска и подъема кривой, что приводит к досадным ошибкам (иногда значимым) при определении толщин выделенных коллекторов.Выделение коллекторов по качественным признакамСреди видов ГИС, применяемых при изучении вскрытых скважиной горных пород, наибольшей информативностью и достоверностью при выделении в изучаемом разрезе проницаемых интервалов, т.е. пластов-коллекторов, обладают так называемые прямые методы исследования пласта ОПК и ГДК. Факт получения из пласта флюида в любом количестве и измерения пластового давления аппаратурой ОПК и ГДК является прямым доказательством наличия коллектора независимо от геофизической характеристики пласта. Неполучение притока флюида из пласта при ОПК и ГДК в случае благоприятной геофизической характеристики не является достаточным основанием для отнесения пласта к неколлектору. В таких случаях требуется проведение дополнительных (повторных) исследований.К сожалению, прямые исследования в нашей стране, за исключением отдельных регионов (Якутия. Республики Башкортостан и Татарстан, Астраханская и Оренбургская области, шельф о. Сахалин), практически не применяются или применяются крайне редко (Западная Сибирь), поэтому на практике повсеместно для выделения коллекторов используется комплекс качественных (прямых и косвенных) признаков, а также количественные критерии.Прямые качественные признаки являются наиболее надежным способом выделения коллекторов. Они основаны на доказательстве подвижности пластовых флюидов. Таким доказательством является установление факта наличия проникновения в пласты фильтрата ПЖ и формирования (или расформирования) зон проникновения; эти факты в большинстве случаев являются достаточным признаком коллектора.Признаками проникновения по данным ГИС являются:сужение диаметра скважин, зафиксированное на кривой кавернометрии, вследствие образования глинистой или шламовой корки;радиальный градиент сопротивлений, измеренных зондами с разной глубинностью исследований:изменение показаний методов ГИС, выполненных по специальным методикам и фиксирующих формирование или расформирование зоны проникновения.В коллекторах со сложной структурой пустотного пространства прямые качественные признаки устанавливаются чаще всего только по материалам ГИС, выполненным по специальным методикам и фиксирующим формирование зоны проникновения при:повторных измерениях во времени при сохранении свойств ПЖ в стволе скважины (методика временных измерений);измерениях на ПЖ с различными физическими свойствами (методика двух ПЖ с различной минерализацией, методики с закачкой активированных меченных жидкостей);направленном воздействии на пласты путем создания дополнительной репрессии (методика "каротаж-репрессия-каротаж") или депрессии ("каротаж-испытание-каротаж").В обсаженных скважинах прямые качественные признаки устанавливаются при повторных измерениях стационарными импульсными видами нейтронного каротажа (НК), свидетельствующих о расформировании во времени зоны проникновения.Весьма информативными для выделения коллекторов являются также данные ГТИ (данные механического каротажа, расходометрии, газового каротажа и результаты анализа шлама и керна).Косвенные качественные признаки обычно сопутствуют прямым признакам и характеризуют породы, которые по своим емкостным свойствам и чистоте минерального скелета могут принадлежать к коллекторам. К этим признакам относятся:аномалии на кривой самопроизвольной поляризации ПС (отрицательные, если удельное сопротивление ПЖ больше сопротивления пластовой воды, и положительные при их обратном соотношении);низкие показания на кривой гамма-каротажа (ГК):показания ядерно-магнитного каротажа (ЯМК), превышающие фоновые:затухание упругих волн, создаваемое трещинами и кавернами, при акустическом каротаже. Косвенные качественные признаки отражают присутствие, но не движение в исследуемой породе свободных флюидов. Например, показания ядерно- магнитного каротажа, превышающие фоновые, с равным успехом могут характеризовать сообщающиеся и несообщающиеся между собой поры и каверны. Увеличенное затухание упругих волн при акустическом каротаже может быть вызвано присутствием в породах открытых либо залеченных трещин и каверн и т.п.В общем случае выделение коллекторов по качественным признакам следует проводить по совокупности прямых признаков, указывающих на наличие проникновения фильтрата ПЖ в пласты, с использованием косвенных качественных признаков.Для исключения присутствующих в выделенных пластах-коллекторах тонких плотных высококарбонатных или глинистых непроницаемых прослоев привлекаются данные всего имеющегося комплекса ГИС (МК, БМК, БК, ГК, НК, АК).Эффективность выделения коллекторов по прямым качественным признакам существенно зависит от времени между разбуриванием и исследованием разреза, а также от ряда технологических и геологических факторов, к которым прежде всего следует отнести величину репрессии на пласт и свойства ПЖ. Эффективность снижается при низкой водоотдаче ПЖ, в разрезах с аномально высокими пластовыми давлениями (АВПД) или при бурении на равновесии (репрессия на пласт близка к нулю). Снижается эффективность выделения коллекторов по прямым качественным признакам и на газовых месторождениях с высотой залежей в сотни метров, где в приподнятых участках залежей репрессии значительно ниже, чем вблизи ГВК (или ГНК).Известны факты отсутствия прямых признаков проникновения против высокопроницаемых коллекторов в длительно бурящихся скважинах вследствие кольматации пластов глинистыми частицами, а также гематитом и магнетитом при применении утяжеленных промывочных жидкостей. Кольматация пластов с ухудшенными коллекторскими свойствами происходит медленнее, и они дольше сохраняют признаки коллекторов.В породах с пластовыми водами хлоркальциевого типа, разбуривающихся на промывочных жидкостях с добавками карбоксилметилцеллюлозы (КМЦ), со временем проникновение фильтрата ПЖ в коллекторы прекращается вследствие появления в порах нерастворимого осадка, образующегося при взаимодействии пластовой воды с КМЦ; более того, существовавшие вначале корки исчезают. Скорость образования осадка зависит от интенсивности фильтрации, концентрации КМЦ и содержания воды в порах. Например, в скважинах Ботуобинского нефтегазоносного района (Якутия), бурящихся на рассолах, исчезновение шламовых корок против низкопористых водонасыщенных коллекторов наблюдается в первые 5 суток после их вскрытия. Против водонасыщенных высокопористых (Кп = 16 - 24%) коллекторов корки сохраняются до 25 суток. В продуктивных коллекторах процессы закупорки происходят более медленно вследствие малых величин остаточной водонасыщенности Kво.Рассмотрим более детально возможности и эффективность для выделения коллекторов вышеперечисленных прямых качественных признаков и методики их установления.Выделение коллекторов по количественным критериямКак уже отмечалось, наиболее надежно выделение коллекторов реализуется с использованием прямых качественных признаков. При отсутствии информации для этого выделение коллекторов реализуется на статистическом уровне с использованием количественных критериев коллектора. Основными причинами отсутствия информации для выделения коллекторов по прямым признакам являются следующие:отсутствие в выполненном комплексе ГИС диаграмм методов, по которым устанавливается проникновение фильтрата ПЖ в пласт (МК, каверномер, БК+БМК. многозондовые БК, ИК, ВИКИЗ и др.); в абсолютном большинстве регионов в эксплуатационных скважинах эти диаграммы не записывают:плохое качество диаграмм вышеназванных методов;бурение скважин на токонепроводящих, малофильтрующихся или высокоминерализованных ПЖ:бурение скважин на равновесии.Выделение коллекторов с использованием количественных критериев основано на следующих предпосылках:1) в исследуемом разрезе породы-коллекторы отличаются от вмещающих пород-неколлекторов значениями фильтрационно-емкостных свойств, а, следовательно, и значениями геофизических характеристик, отражающих эти свойства;2) граница между коллекторами и неколлекторами на статистическом уровне характеризуется граничными значениями фильтрационноемкостных (проницаемость Кпр,гр, пористость Кп,гр, глинистость Кгл,гр, относительная глинистость гл,гр и др.) или геофизических (относительная амплитуда, интервальное время, объемная плотность, и др.) характеристик.Выделение коллекторов проводят сравнением измеренных значений фильтрационно-емкостных или геофизических характеристик с найденными граничными значениями.Граничное значение каждого параметра определяют раздельно для коллекторов с различной насыщенностью (газ, нефть, вода).Количественные критерии коллектора могут быть найдены для любой фильтрационно-емкостной или геофизической характеристики породы, однако чаще всего устанавливают граничное значение пористости Кп,гр, как параметра, оценка которого по данным исследования керна и ГИС выполняется достаточно надежно и в массовом масштабе. Для Западной Сибири в качестве такого параметра часто выбирают относительную амплитуду ПС.Количественные критерии, определяющие на статистическом уровне границу "коллектор-неколлектор", устанавливаются двумя принципиально различными способами - статистическими, определяющими количественный критерий по результатам статистической обработки данных непосредственного разделения пластов в разрезе базовой скважины (или нескольких скважин) на коллекторы и неколлекторы, и корреляционными с оценкой численных значений количественных критериев из данных сопоставления различных фильтрационно-емкостных и геофизических характеристик пород.2.

Список литературы

Список использованной литературы.
1) Говорков М.Б. Разработка технологии выделения проницаемых интервалов пластов по кинематическим и динамическим параметрам волны Стоунли с использованием многоэлементной акустической аппаратуры нового поколения. 2003.
2) Дьяконов Д.И., Леонтьев Е.И, Кузнецов Г.С. «Общий курс геофизических исследований скважин» М. Недра, 1984.
3) Итенберг С.С., Дахгильков Т.Д. Геофизические исследования в скважинах. – М. Недра,1982.
4) Руководящий документ «Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах»
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00487
© Рефератбанк, 2002 - 2024