Вход

Основные понятия и значение генетики

Рекомендуемая категория для самостоятельной подготовки:
Курсовая работа*
Код 201841
Дата создания 22 мая 2017
Страниц 31
Мы сможем обработать ваш заказ (!) 27 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 150руб.
КУПИТЬ

Описание

Оглавление:
1. Введение 3
2. Основные этапы развития генетики. История 5
3. Основные методы генетики 6
4. Основные понятия и задачи генетики 7
4.1. Задачи 7
4.2. Основные понятия генетики 7
4.3. Генетическая символика 8
5. Ген как основной объект науки 9
5.1. Цитологические основы генетики 9
5.2. Природа генов 9
5.3. Изменчивость 10
5.4. Влияние среды 10
5.5. Источники изменчивости и роль генов в развитии 11
6. Основные теории генетики 12
7. Молекулярная генетика 13
7.1. Тонкая структура. Функциональная структура генов. Генетический код 13
7.2. Репликация ДНК 14
7.3. Генетический контроль синтеза белков 14
7.4. Сцепление 15
7.5. Группы сцепления и хромосомы 15
7.6. Генные мутации 16
8. Генетика и человек. Общество и генетика. Значение генетики 18
8.1. «Геном человека» в медицине 18
8.2. ...

Содержание

Оглавление:
1. Введение 3
2. Основные этапы развития генетики. История 5
3. Основные методы генетики 6
4. Основные понятия и задачи генетики 7
4.1. Задачи 7
4.2. Основные понятия генетики 7
4.3. Генетическая символика 8
5. Ген как основной объект науки 9
5.1. Цитологические основы генетики 9
5.2. Природа генов 9
5.3. Изменчивость 10
5.4. Влияние среды 10
5.5. Источники изменчивости и роль генов в развитии 11
6. Основные теории генетики 12
7. Молекулярная генетика 13
7.1. Тонкая структура. Функциональная структура генов. Генетический код 13
7.2. Репликация ДНК 14
7.3. Генетический контроль синтеза белков 14
7.4. Сцепление 15
7.5. Группы сцепления и хромосомы 15
7.6. Генные мутации 16
8. Генетика и человек. Общество и генетика. Значение генетики 18
8.1. «Геном человека» в медицине 18
8.2.Потенциал и значение генетики 21
8.2.1. Генетика и гении 21
8.2.2. Значение генетики для общества 25
9. Заключение 29
10.Список использованной литературы:……………………………………31

Введение

Оглавление:
1. Введение 3
2. Основные этапы развития генетики. История 5
3. Основные методы генетики 6
4. Основные понятия и задачи генетики 7
4.1. Задачи 7
4.2. Основные понятия генетики 7
4.3. Генетическая символика 8
5. Ген как основной объект науки 9
5.1. Цитологические основы генетики 9
5.2. Природа генов 9
5.3. Изменчивость 10
5.4. Влияние среды 10
5.5. Источники изменчивости и роль генов в развитии 11
6. Основные теории генетики 12
7. Молекулярная генетика 13
7.1. Тонкая структура. Функциональная структура генов. Генетический код 13
7.2. Репликация ДНК 14
7.3. Генетический контроль синтеза белков 14
7.4. Сцепление 15
7.5. Группы сцепления и хромосомы 15
7.6. Генные мутации 16
8. Генетика и человек. Общество и генетика. Значение генетики 18
8.1. «Геном человека» в медицине 18
8.2. Потенциал и значение генетики 21
8.2.1. Генетика и гении 21
8.2.2. Значение генетики для общества 25
9. Заключение 29
10.Список использованной литературы:……………………………………31

Фрагмент работы для ознакомления

В 70 - 80-х годах XIX в. были описаны митоз и поведение хромосом во время деления клетки, что навело на мысль, что эти структуры ответственны за передачу наследственных потенций от материнской клетки дочерним. Деление материала хромосом на две равные частицы свидетельствовало в пользу гипотезы, что именно в хромосомах сосредоточена генетическая память. Изучение хромосом у животных и растений привело к выводу, что каждый вид животных существ характеризуется строго определенным числом хромосом.
Открытый Э. ван Бенедоном (1883) факт, что число хромосом в клетках тела вдвое больше, чем в половых клетках, можно объяснить: поскольку при оплодотворении ядра половых клеток сливаются и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворения должно противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое.
В 1900 г. независимо друг от друга К. Корренс в Германии, Г. де Фриз в Голландии и Э. Чермак в Австрии обнаружили в своих опытах открытые ранее закономерности и, натолкнувшись на его работу, вновь опубликовали её в 1901 г. Эта публикация вызвала глубокий интерес к количественным закономерностям наследственности. Цитологи обнаружили материальные структуры, роль и поведение которых могли быть однозначно связаны с менделевскими закономерностями. Такую связь усмотрел в 1903 г. В. Сэттон - молодой сотрудник известного американского цитолога Э. Вильсона. Гипотетические представления о наследственных факторах, о наличии одинарного набора факторов в гаметах, и двойного - в зиготах получили обоснование в исследованиях хромосом. Т. Бовери (1902) представил доказательства в пользу участия хромосом в процессе наследственной передачи, показав, что нормальное развитие морского ежа возможно только при наличии всех хромосом.
Установлением того факта, что именно хромосомы несут наследственную информацию, Сэттом и Бовери положили начало новому направлению генетики - хромосомной теории наследственности.
5.2. Природа генов
Изучение наследственности уже давно было связано с преставлением о ее корпускулярной природе. В 1866 г. Мендель высказал предположение, что признаки организмов определяются наследуемыми единицами, которые он назвал “элементами”. Позднее их стали называть “факторами” и, наконец, генами; было показано, что гены находятся в хромосомах, с которыми они и передаются от одного поколения к другому.
Несмотря на то, что уже многое известно о хромосомах и структуре ДНК, дать определение гена очень трудно, пока удалось сформулировать только три возможных определения гена:
а) ген как единица рекомбинации.
На основании своих работ по построению хромосомных карт дрозофилы Морган постулировал, что ген - это наименьший участок хромосомы, который может быть отделен от примыкающих к нему участков в результате кроссинговера. Согласно этому определению, ген представляет собой крупную единицу, специфическую область хромосомы, определяющую тот или иной признак организма;
б) ген как единица мутирования.
В результате изучения природы мутаций было установлено, что изменения признаков возникают вследствие случайных спонтанных изменений в структуре хромосомы, в последовательности оснований или даже в одном основании. В этом смысле можно было сказать, что ген - это одна пара комплиментарных оснований в нуклеотидной последовательности ДНК, т.е. наименьший участок хромосомы, способный претерпеть мутацию.
в) ген как единица функции.
Поскольку было известно, что от генов зависят структурные, физиологические и биохимические признаки организмов, было предложено определять ген как наименьший участок хромосомы, обусловливающий синтез определенного продукта.
5.3. Изменчивость
Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду. Поразительное морфологическое разнообразие особей в пределах любого вида привлекло внимание Дарвина и Уоллеса во время их путешествий. Закономерный, предсказуемый характер передачи таких различий по наследству послужил основой для исследований Менделя. Дарвин установил, что определенные признаки могут разви­ваться в результате отбора, тогда как Мендель объяснил механизм, обеспечивающий передачу из поколения в поколение признаков, по которым ведется отбор.
Мендель описал, каким образом наследственные факторы определяют генотип организма, который в процессе развития проявляется в структурных, физиологических и биохимических особенностях фенотипа. Если фенотипическое проявление любого признака обусловлено, в конечном счете генами, контролирующими этот признак, то на степень развития определенных признаков может оказывать влияние среда.
Изучение фенотипических различий в любой большой популяции показывает, что существуют две формы изменчивости - дискретная и непрерывная. Для изучения изменчивости какого-либо признака, например роста у человека, необходимо измерить этот признак у большого числа индивидуумов в изучаемой популяции. Результаты измерений представляют в виде гистограммы, отражающей распределение частот различных вариантов этого признака в популяции.
5.4. Влияние среды
Главный фактор, детерминирующий любой фенотипический признак, - это генотип. Генотип организма определяется в момент оплодотворения, но степень последующей экспрессии этого генетического потенциала в значительной мере зависит от внешних факторов, воздействующих на организм во время его развития. Так, например, использованный Менделем сорт гороха с длинным стеблем обычно достигал высоты 180 см. Однако для этого ему необходимы были соответствующие условия - освещение, снабжение водой и хорошая почва. При отсутствии оптимальных условий (при наличии лимитирующих факторов) ген высокого стебля не мог в полной мере проявить свое действие. Эффект взаимодействия генотипа и факторов среды продемонстрировал датский генетик Иогансен. В ряде экспериментов на карликовой фасоли он выбирал из каждого поколения самоопылявшихся растений самые тяжелые и самые легкие семена и высаживал их для получения следующего поколения. Повторяя эти эксперименты на протяжении нескольких лет, он обнаружил, что в пределах «тяжелой» или «легкой» селекционной линии семена мало различались по среднему весу, тогда как средний вес семян из разных линий сильно различался. Это позволяет считать, что на фенотипическое проявление признака оказывают влияние как наследственность, так и среда. На основании этих результатов можно определить непрерывную фенотипическую изменчивость как «кумулятивный эффект варьирующих факторов среды, воздействующих на вариабельный генотип». Кроме того, эти результаты показывают, что степень наследуемости данного признака определяется в первую очередь генотипом. Что касается развития таких чисто человеческих качеств, как индивидуальность, темперамент и интеллект, то, судя по имеющимся данным, они зависят как от наследственных, так и от факторов среды, которые, взаимодействуя в различной степени у разных индивидуумов, влияют на окончательное выражение признака. Именно эти различия в тех и других факторах создают фенотипические различия между индивидуумами. Мы пока еще не располагаем данными, которые твердо указывали бы на то, что влияние каких-то из этих факторов всегда преобладает, однако среда никогда не может вывести фенотип за пределы, детерминированные генотипом.
5.5. Источники изменчивости и роль генов в развитии
Необходимо ясно представлять себе, что взаимодействие между дискретной и непрерывной изменчивостью и средой делает возможным существование двух организмов с идентичным фенотипом. Механизм репликации ДНК при митозе столь близок к совершенству, что возможности генетической изменчивости у организмов с бесполым размножением очень малы. Поэтому любая видимая изменчивость у таких организмов почти наверное обусловлена воздействиями внешней среды. Что же касается организмов, размножающихся половым путем, то у них есть широкие возможности для возникновения генетических различий. Практически неограниченными источниками генетической изменчивости служат два процесса, происходящие во время мейоза:
1. Реципрокный обмен генами между хромата - дамп гомологичных хромосом, который может происходить в профазе 1 мейоза. Он создает новые группы сцепления, т.е. служит важным источником генетической рекомбинации аллелей.
2. Ориентация пар гомологичных хромосом (бивалентов) в экваториальной плоскости веретена в метафазе I мейоза определяет направление, в котором каждый член пары будет перемещаться в анафазе I. Эта ориентация носит случайный характер. Во время метафазы II пары хроматид опять-таки ориентируется случайным образом, и этим определяется, к какому из двух противоположных полюсов направится та или иная хромосома во время анафазы II. Случайная ориентация и последующее независимое расхождение (сегрегация) хромосом делают возможным большое число различных хромосомных комбинаций в гаметах; число это можно подсчитать.
Третий источник изменчивости при половом размножении - это то, что слияние мужских и женских гамет, приводящее к объединению двух гаплоидных наборов хромосом в диплоидном ядре зиготы, происходит совершенно случайным образом (во всяком случае, в теории); любая мужская гамета потенциально способна слиться с любой женской гаметой.
Эти три источника генетической изменчивости и обеспечивают постоянную «перетасовку» генов, лежащую в основе происходящих все время генетических изменений. Среда оказывает воздействие на весь ряд получающихся таким образом фенотипов, и те из них, которые лучше всего приспособлены к данной среде, преуспевают. Это ведет к изменениям частот аллелей и генотипов в популяции. Однако эти источники изменчивости не порождают крупных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.
Роль генов в развитии организма огромна. Гены характеризуют все признаки будущего организма, такие, как цвет глаз и кожи, размеры, вес и многое другое. Гены являются носителями наследственной информации, на основе которой развивается организм.
6. Основные теории генетики
Краткое изложение сути гипотез Менделя
Каждый признак данного организма контролируется парой аллелей.
Если организм содержит два различных аллеля для данного признака, то один из них (доминантный) может проявляться, полностью подавляя проявление другого (рецессивного).
При мейозе каждая пара аллелей разделяется (расщепляется) и каждая гамета получает по одному из каждой пары аллелей (принцип расщепления).
При образовании мужских и женских гамет в каждую из них может попасть любой аллель из одной пары вместе с любым другим из другой пары (принцип независимого распределения).
Каждый аллель передается из поколения в поколение как дискретная не изменяющаяся единица.
Каждый организм наследует по одному аллелю (для каждого признака) от каждой из родительских особей.
Оценка теории Ламарка
Выдающаяся заслуга Ламарка заключается в создании первого эволюционного учения. Он отверг идею постоянства видов, противопоставив ей представление об изменяемости видов. Его учение утверждало существование эволюции как исторического развития от простого к сложному. Впервые был поставлен вопрос о факторах эволюции. Ламарк совершенно правильно считал, что условия среды оказывают важное влияние на ход эволюционного процесса. Он был одним из первых, кто отметил чрезвычайную длительность развития жизни на Земле. Однако Ламарк допустил серьезные ошибки прежде всего в понимании факторов эволюционного процесса, выводя их из якобы присущего всему живому стремления к совершенству. Также неверно понимал причины возникновения приспособленности , прямо связывал их с влиянием окружающей среды. Это породило очень распространенные, но научно совершенно необоснованные представления о наследовании признаков, приобретаемых организмами под непосредственным воздействием среды.
Эволюционное учение Ламарка не было достаточно доказательным и не получило широкого признания среди его современников.
Основные положения теории Дарвина и значение ее для науки
Основные принципы эволюционного учения Дарвина сводятся к следующим положением:
1. Каждый вид способен к неограниченному размножению.
2. Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства.
3. Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, т.е. лучше приспособлены.
Избирательное выживание и размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором.
Под действием естественного отбора, происходящего в разных условиях, группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Группы особей приобретают настолько существенные отличия, что превращаются в новые виды.
Крупнейшие ученые в разных странах способствовали распространению эволюционной теории Дарвина, защищали ее от нападок и сами вносили вклад в ее дальнейшее развитие. Дарвинизм оказал сильнейшее влияние не только на биологию и естественные науки, но и на общечеловеческую культуру, способствуя развитию естественнонаучных взглядов на возникновение и развитие живой природы и самого человека.
7. Молекулярная генетика
7.1. Тонкая структура. Функциональная структура генов. Генетический код
Одно из наиболее существенных достижений молекулярной генетике заключается в установлении минимальных размеров участка гена, передающихся при кроссинговере ( в молекулярной генетики вместо термина «кроссинговера» принят термин "рекомбинация", который все еще начинают использовать и в генетике высших существ) , подвергающихся мутации и осуществляющих одну функцию. Оценки этих величин были получены в 50-е годы С. Бензером.
Среди различных внутригенных мутаций Бендер выделил два класса: точечные мутации (мутации минимальной протяженности) и делеции (мутации, занимающие достаточно широкую область гена). Установив факт существования точечных мутаций, Бензер задался целью определить минимальную длину участка ДНК, передаваемую при рекомбинации. Оказалось, что эта величина составляет не более нескольких нуклеотидов. Бензер назвал эту величину реконом.
Следующим этапом было установление минимальной длины участка, изменения которого достаточно для возникновении мутации (мутона). По мнению Бензера, эта величина равна нескольким нуклеотидам. Однако в дальнейших тщательных определениями было выявлено, что длина одного мутона не превышает размер одного нуклеотида.
Следующим важным этапом в изучении генетического материала было подразделение всех генов на два типа: регуляторный гены, дающие информацию о строении регуляторных белков и структурные гены, кодирующие строение остальных полилипипедных цепей. Эта идея и экспериментальное доказательство было разработано исследователями Ф. Жакобом и Ж. Моно (1961).
Выяснение основной функции гена как хранителя информации о строении определенной полипептидной цепи поставило перед молекулярной генетикой вопрос : каким образом осуществляется перенос информации от генетических структур (ДНК) к морфологическим структурам, другими словами, каким образом записана генетическая информация и как она реализуется в клетке.
Согласно модели Уотсона - Крика, генетическую информацию в ДНК несет последовательность расположения оснований. Таким образом, в ДНК заключены четыре элемента генетической информации. В тоже время в белках было обнаружено 20 основных аминокислот. Необходимо было выяснить, как язык четырехбуквенной записи в ДНК может быть переведен на язык двадцати буквенной записи в беках. Решающий вклад в разработку этого механизма был внесен Г. Гамовым(1954,1957). Он предположил, что для кодирования одной аминокислоты используется сочетание из трех нуклеотидов ДНК ( нуклеотидом называют соединение, состоящее из сахара {дизоксорибоза}, фосфата и основания и образующее элементарный мономер ДНК). Эта элементарная единица наследственного материала, кодирующая одну аминокислоту, получила название кодона.
Предположение Гамова о трехнуклеотидном составе кодона выглядело логически, доказать его экспериментально долгое время не удавалось. Только в конце 1961 г., когда многим стало казаться, что этот вопрос не будут решен, была опубликована работа кембриджской группой исследователей ( Ф. Крик, Л. Барнет, С. Берннер и Р. Ваттс – Тобин), выяснившие тип кода и установивших его общую природу. Важным в их работе было то, что они с самого начала строго поставили вопрос о роли начальной , стартовой точки в гене. Они доказали, что в каждом гене есть строго фиксированная начальная точка, с которой фермент, синтезирующий РНК, начинает « прочтение « гена, причем читает его в одном направлении и непрерывно. Авторы так же доказали. Что размер кодона действительно равен трем нуклеотидам и что наследственная информация, записанная в ДНК, читается от начальной точки гена «без запятых и промежутков».

7.2. Репликация ДНК
Уотсона и Крика предложили гипотезу строения ДНК, согласно которой, последовательность оснований в одной нити ДНК однозначно задавала последовательность оснований другой нити. Далее они предположили, что две нити ДНК раскручиваются и на каждой из них в соответствии с правилами комплиментарности синтезируются дочерни нити. Таким образом, каждая новая молекула ДНК должна содержать одну родительскую и одну дочернюю. Этот тип (полуконсервативный) репликации к концу 50 годов был экспериментально обосновали в опытах на бактериях. Опыты на высших организмах также косвенно говорили о правильности этого вывода. В это же время А. Корнберг выделил фермент, который, как он считал, осуществляет синтез белка. Для работы фермента было необходимо наличие затворочной ДНК и всех четырех предшественников ДНК (дезоксорибонукеозидтрифосфатов). В последующем десятилетии биохимики получили огромное количество фактов о характере протекании репликационного процесса. Было выделено и охарактеризовано несколько типов ферментов, осуществляющих реплекцию (ДНК-полимераз).

7.3. Генетический контроль синтеза белков
Важнейшим достижением молекулярной генетики было выяснение цепи реакций, обеспечивающих передачу информации от ДНК к белку. Цитохимически было доказано, что ДНК локализована главным образом в ядре клеток. Синтез белков, как показали исследования начала 50-х годов. происходит в основном в цитоплазме. Сразу возник вопрос: каким образом ядро может осуществлять контроль за синтезом белка в цитоплазме?
В 30-х годах XX в. было установлено. что в клетках наряду с ДНК содержится второй класс нуклеиновых кислот -рибонуклеиновые кислоты (РНК). В отличие от ДНК в РНК вместо сахара дизоксирибозы содержится также пяти-членный углевод - рибоза, а одно из пиримидиновых оснований - Тимин - заменено на урацил. Кроме того было показано, что РНК , как правило, не двуспиральная, а однонитчата.

Список литературы

Оглавление:
1. Введение 3
2. Основные этапы развития генетики. История 5
3. Основные методы генетики 6
4. Основные понятия и задачи генетики 7
4.1. Задачи 7
4.2. Основные понятия генетики 7
4.3. Генетическая символика 8
5. Ген как основной объект науки 9
5.1. Цитологические основы генетики 9
5.2. Природа генов 9
5.3. Изменчивость 10
5.4. Влияние среды 10
5.5. Источники изменчивости и роль генов в развитии 11
6. Основные теории генетики 12
7. Молекулярная генетика 13
7.1. Тонкая структура. Функциональная структура генов. Генетический код 13
7.2. Репликация ДНК 14
7.3. Генетический контроль синтеза белков 14
7.4. Сцепление 15
7.5. Группы сцепления и хромосомы 15
7.6. Генные мутации 16
8. Генетика и человек. Общество и генетика. Значение генетики 18
8.1. «Геном человека» в медицине 18
8.2.Потенциал и значение генетики 21
8.2.1. Генетика и гении 21
8.2.2. Значение генетики для общества 25
9. Заключение 29
10.Список использованной литературы:……………………………………31
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.0039
© Рефератбанк, 2002 - 2024