Вход

Термодинамические основы газофикации угля.

Рекомендуемая категория для самостоятельной подготовки:
Реферат*
Код 200208
Дата создания 31 мая 2017
Страниц 20
Мы сможем обработать ваш заказ (!) 19 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
730руб.
КУПИТЬ

Описание

Свойства угля как сырья для подземной газификации.

Газификацией угля называется процесс получения из не¬го горючих газов. Подземную газификацию угля производят непо¬средственно в недрах Земли на месте ее залегания.
Горючие газы возможно получать не только в результате гази¬фикации угля, но и других твердых горючих ископаемых (торф, горючие сланцы). В настоящее время подземную газификацию твердых видов топлива производят только на базе угольных ме-сторождений.
...

Содержание

Свойства угля как сырья для подземной газификации.

Газификацией угля называется процесс получения из не¬го горючих газов. Подземную газификацию угля производят непо¬средственно в недрах Земли на месте ее залегания.
Горючие газы возможно получать не только в результате гази¬фикации угля, но и других твердых горючих ископаемых (торф, горючие сланцы). В настоящее время подземную газификацию твердых видов топлива производят только на базе угольных ме-сторождений.

Введение

Свойства угля как сырья для подземной газификации.

Газификацией угля называется процесс получения из не¬го горючих газов. Подземную газификацию угля производят непо¬средственно в недрах Земли на месте ее залегания.
Горючие газы возможно получать не только в результате гази¬фикации угля, но и других твердых горючих ископаемых (торф, горючие сланцы). В настоящее время подземную газификацию твердых видов топлива производят только на базе угольных ме-сторождений.

Фрагмент работы для ознакомления

дутья
газовых про­дуктов газифи­кации
огневого забоя
Прямой
Обращенный
Фронтальный
Поточный
поточной газификации движется перпендикулярно к направлению движения окислителя и газообразных продуктов газификации.
Прямой и обращенный методы газификации угля можно рас­сматривать как поточные в том случае, если считать каждую пору и трещину пласта отдельным каналом газификации. Сумму отдельных пор и трещин при прямом и обращенном методах под­земной газификации угля можно представить как систему при­мерно параллельных каналов газификации. Газификация угля в его порах и трещинах при прямом и обращенном методах может получить превалирующее развитие по одной или нескольким тре­щинам. В этом случае прямой и обращенный методы переходят в процесс газификации в канале. С учетом изложенного главной отличительной особенностью газификации угля в порах и трещи­нах при прямом и обращенном методах от газификации в канале является то, что в первых двух случаях движение огневого забоя перпендикулярно к направлению движения дутья и газообразных продуктов газификации весьма ограниченно, а при газификации в канале это направление является преобладающим.
В каждом из вышеперечисленных методов подземной газифи­кации угля происходит реагирование кислорода, углекислоты и водяного пара с горючими компонентами угля и продуктов его газификации. Превалирующим является гетерогенный процесс реагирования кислорода дутья с углеродом угля. Так как удель­ная реагирующая поверхность угля велика, то газификация его в порах и трещинах в направлении движения дутья заканчивается на небольшой длине реакционной зоны.
При подземной газификации в канале длина кислородной зоны значительно больше, чем при других методах, что позволяет по­лучить максимально возможную общую поверхность реагирования. Для всех методов подземной газификации угля характерно на­личие различных зон, в каждой из которых доминирующим явля­ется один из процессов (см. рис. 15.2). К таким зонам относятся зона окисления или кислородная зона (ЗО), зона восстановления (3В), зона термического разложения (ЗТ), зона частичного тер­мического разложения (ЗЧТ), зона сушки (ЗС) и зона шла­ков (ЗШ).
При прямом методе подземной газификации угля кислород воздушного дутья реагирует с коксовым остатком, образовавшим­ся в процессе нагрева газообразными продуктами газификации участков пласта, расположенных между огневым забоем и газоот-водящей скважиной. При этом методе кислород воздушного дутья расходуется на газификацию только коксового остатка, который другим способом газифицировать невозможно. Кроме этого, при прямом методе тепло шлаков используется на нагрев воздушного дутья, а тепло газообразных продуктов газификации, получен­ных в предыдущих зонах, расходуется на реализацию процессов в последующих зонах, так как в направлении движения газа зоне сушки предшествует зона термического разложения, а ей, в свою очередь, предшествует зона восстановления и т. д.
Прямой метод подземной газификации угля имеет самый вы­сокий к. п. д., однако он может применяться при сравнительно высокой начальной проницаемости угольного пласта.
При обращенном методе подземной газификации угля кисло­род дутья расходуется на реагирование не только с коксовым остатком, но и с газообразными горючими компонентами. Обра­щенный метод обладает недостатками по сравнению с прямым методом, которые заключаются в том, что расход дутья на еди­ницу тепла в образующемся газе выше, теплота сгорания этого газа ниже, нерационально используется тепло, выделяющееся в процессе газификации.
Если при прямом методе проницаемость пласта в процессе его разогрева и газификации постоянно возрастает, то при обращен­ном методе она остается постоянной.
При поточном методе подземной газификации угля, так же как и при обращенном, кислород дутья расходуется на реагиро­вание с коксовым остатком и с горючими газообразными продук­тами газификации. Однако большая часть кислорода все же рас­ходуется на реагирование с коксовым остатком. По тепловым и химико-технологическим особенностям поточный метод занимает промежуточное положение между прямым и обращенным. Если при прямом методе в результативном газе практически полностью сохранились летучие горючие компоненты, образовавшиеся на стадии коксования угля без доступа воздуха в последующих зо­нах газификации, то при обращенном методе они в большей части прореагировали с кислородом. При поточном методе в результа­тивном газе находятся как /летучие газы коксования, так и газо­вые продукты реакции кислорода с коксом.
Одним из преимуществ поточного метода является возмож­ность реверсирования воздушного дутья без изменения химико-технологической сущности процесса газификации.
Распределение температуры по длине канала газификации.
Основным процессом при подземной газификации является взаимодействие дутья и газов с твердой поверхностью угля. Про­текающие при этом реакции также являются основными по срав­нению с другими. В связи с этим температурный режим пласта по длине канала газификации определяется главным образом температурой воздушного дутья и газов.
По длине канала газификации можно выделить восемь участ­ков (рис. 15.3). Температура каждого из них характеризуется про­цессом, протекающим на длине этого участка.
На участке дутья (ОА) температура дутья и пласта прак­тически не изменяется, так как при низких температурах терми­ческое разложение угля и его реагирование с кислородом дутья происходит очень медленно.
Участок дутьевой сушки (АБ) характеризуется повы­шением температуры дутья от начальной естественной температуры пласта Тп До температуры Т1 , при которой происходит ис­парение влаги в угле (Т1 ≈ 110°С).
На участке подготов­ки воспламенения угля (БВ) происходит его нагрев от температуры сушки Т1 до температуры воспламенения Т2 (Т2 ≈200°С для бурых углей и 300 — 350 °С для каменных уг­лей).
Повышение температуры угля и дутья на участке ОВ объясняется в основном тепло­передачей от более нагретых участков, расположенных пра­вее, за счет теплопроводно­сти.
Максимальный рост температуры имеет место на участке экзотермических реакций (BE), где протекают основные процессы, тепловыделение которых значительно перекрывает теплопотери в окружающую среду и на эндотермические реакции.
Вправо от этого участка температуры газовой и твердой фаз понижаются. Температура Т3 примерно равна 900 — 1000 °С.
Участок ЕИ характеризуется эндотермическими реак­циями. На этом участке ранее выделившееся тепло поглощает­ся окружающей средой и расходуется на эндотермические реак­ции. Снижение температуры на участке ИМ с Т4 (Т4 ≈580÷6300С) до Т5 происходит в результате теплопотерь в окружающую среду и на поддержание процесса термического разложения угля.
В пределах участка газовой сушки МН происходит по­нижение температуры с Т5(Т5 ≈110 ÷ ÷130 °С) .до температуры пла­ста Тп в результате расхода тепла на сушку угля.
На участке правее точки Н температура газообразной и твер­дой фаз остается практически постоянной, равной температуре пласта. Этот участок называется газовым.
Технологические параметры канала газификации.
Основными технологическими параметрами канала газифика­ции являются мощность, продуктивность, эффективность и гидрав­лическое сопротивление.
Мощность канала газификации N характеризуется количеством газа, выдаваемого в единицу времени (м3/ч), или ко­личеством тепла, выделившимся в результате сгорания этого газа (Дж/ч):
где т — выход газа с единицы дутья, м3 газа/м3 дутья; Д — коли­чество дутья, подаваемого в канал газификации, м3/ч.
Мощность канала газификации на станциях подземной газифи­кации угля достигает 1500 м3/ч или 58,7 МгДж/ч при работе на воздушном дутье.
Удельная теплота сгорания получаемого газа зависит от мощ­ности дутья. Максимальная удельная теплота сгорания газа равна (3,5—4)∙103 кДж/м3 при мощности воздушного дутья 4000— 5000 м3/ч.
П р о д у к т и в н о с т ь к а н а л а г а з и ф и к а ц и и (П) харак­теризуется количеством газифицированного угля за все время ра­боты канала или количеством тепла, выделившегося при сгорании полученного газа (кг или Дж).
Продуктивность канала газификации зависит от геологических факторов и технологии газификации. К геологическим факторам относятся мощность пласта, влажность угля, свойства вмещающих пород. К технологическим факторам относятся место расположе­ния канала газификации относительно уровня почвы пласта, ре­жим дутья, система выгазовывания пласта. Например, при распо­ложении канала газификации у почвы пласта увеличивается его продуктивность в несколько раз по сравнению с расположением канала у кровли пласта.
Отношение продуктивности канала газификации П к мощности угольного пласта h (м) называется относительной про­дуктивностью П()(кг/м или Дж/м):
По =П/h. (15.14)
Эта характеристика позволяет оценить эффективность подземной газификации пластов различной мощности. Продуктивность, отнесенная к длине канала l, называется удельной продуктивностью канала газификации Пу(Дж/м):
П У=ГQ / l, (15.15)
где Г—количество полученного газа за время работы канала га­зификации, кг; Q — удельная теплота сгорания газа, Дж/кг.
Удельная эффективность работы канала газификации характеризуется площадью угольного пласта F (м2) выгазованной при отработке единицы его длины l (м)
Эу = F / l . (15.16)
Эта характеристика показывает значение ширины выгазованного пространства пласта данным каналом газификации. Чем выше удельная эффективность работы канала, тем при большем расстоя­нии между ними можно отрабатывать угольный пласт при его под­земной газификации.
Удельная эффективность работы канала газификации зависит от геологических факторов и свойств угля. В среднем эта величи­на равна 20—25м.
Гидравлическое сопротивление канала гази­фикации характеризует давление дутья, необходимое для веде­ния процесса газификации. Эта величина уменьшается в процессе газификации, и в среднем она равна 500—700 Па.
Для оценки экономической целесообразности подземной гази­фикации угля применяют показатель общего термического к. п. д. процесса т, который равен отношению суммы физического (Qф.пг) и химического (Qх.пг) тепла всех продуктов газификации к сумме физического (Qф.у) и химического (Qx.y) тепла израсходо­ванного угля и дутья (Qф.д):
ηт=(Qф.пг+Qх.пг) / (Qф.у+Qx.y+Qф.д), (15.17),
Кроме указанного к. п. д. существует еще химический к. п. д. ( ηх), который равен отношению химического тепла продук­тов газификации к химическому теплу сгазифицированного угля:
ηx=Qx.пг/Qx.y. (15.18)
Величина химического к. п. д. зависит от многих факторов и на практике изменяется от 40 до 70%.
Проходка канала газификации.
Проходку канала газификации производят прожигом, электросйбойкой и бурением.
Проходка канала газификации прожигом основана на вы­жигании (выгазовывании) угля в узком, вытянутом вдоль пласта, объеме за счет использования его природной газопроницаемости. Этот способ проходки канала газификации называют также филь­трационной, воздушной или огневой сбойкой.
При фильтрационной сбойке главная задача заключается в уве­личении пористости угли за счет выгазовывания его только в объе­ме канала газификации между скважиной истока и скважиной стока. Розжиг в устье одной из скважин производят с помощью специальных зажигательных патронов. Если розжиг образуют в устье скважины истока дутья, то сбойка называется прямой, а если в скважине стока газов —обратной.
При прямой сбойке кислород дутья реагирует с огневым забоем канала газификации, и образующиеся при этом газы распространяются по порам и трещи­нам к скважине стока за счет депрессии, создаваемой в ней.
В этом случае между скважиной истока дутья и скважиной сто­ка газа происходит выгазовывание угля в объеме, напоминающем форму груши (рис. 15.4). Чем больше газопроницаемость пласта в направлении между скважинами по сравнению с газопроницае­мостью в других направлениях, тем выгазованный объем становит­ся более вытянутым.
При обратной сбойке дутье подается в скважину истока 1, а розжиг организуют в устье скважины стока 2 (рис. 15.5). Горе­ние в устье скважины стока поддерживается за счет притока части дутья в направлении от скважины истока. В связи с этим и огневой забой распространяется от скважины стока к скважине истока сравнительно узким и равномерным сечением канала газификации. За счет выгазовывания угля в канале газификации увеличивается сечение природных каналов, представленных порами и трещинами. Так как газопроницаемость угля неравномерная, то прожиг канала газификации происходит наиболее интенсивно в тех местах уголь­ного пласта, где выход дутья максимальный. В связи с этим канал газификации имеет неправильную форму, особенно при прямой сбойке.
Обратная сбойка скважин применяется в абсолютном большин­стве случаев, так как прямой сбойке присущи существенные недо­статки:
1) объем газов и паров воды в канале больше, чем объем дутья, израсходованного на их получение. В связи с этим при прочих равных условиях количество дутья, проходящее через канал гази­фикации при прямой сбойке, меньше, чем при обратной;

Список литературы

Свойства угля как сырья для подземной газификации.

Газификацией угля называется процесс получения из не¬го горючих газов. Подземную газификацию угля производят непо¬средственно в недрах Земли на месте ее залегания.
Горючие газы возможно получать не только в результате гази¬фикации угля, но и других твердых горючих ископаемых (торф, горючие сланцы). В настоящее время подземную газификацию твердых видов топлива производят только на базе угольных ме-сторождений.
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00476
© Рефератбанк, 2002 - 2024