Вход

МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ ДАВЛЕНИЯ В УПРУГОМ ПЛАСТЕ ПРИ ПЛОСКОРАДИАЛЬНОМ ПРИТОКЕ ЖИДКОСТИ К СКВАЖИНЕ

Рекомендуемая категория для самостоятельной подготовки:
Дипломная работа*
Код 197713
Дата создания 07 июня 2017
Страниц 61
Мы сможем обработать ваш заказ (!) 22 апреля в 12:00 [мск]
Файлы будут доступны для скачивания только после обработки заказа.
1 670руб.
КУПИТЬ

Описание

1 ...

Фрагмент работы для ознакомления

Упругий режим с точки зрения физики - расходование или пополнение упругой энергии пласта, происходящее благодаря сжимаемости пород и насыщающих их жидкостей. При пуске добывающей скважины давление в ней уменьшается по сравнению с пластовым. По мере отбора нефти, запас упругой энергии в призабойной зоне уменьшается, т.е. нефть и породы оказываются менее сжатыми, чем раньше. [1] С уменьшением пластового давления до значения, меньшего, чем давление насыщения, из нефти начнет выделяться растворенный в ней газ, и режим пласта изменится - упругий режим сменится режимом растворенного газа или газонапорным.Теорию упругого режима используют главным образом для решения следующих задач по разработке нефтяных месторождений:При определении давления на забое скважины в результате ее пуска, остановки или изменения режима эксплуатации, а также при интерпретации результатов исследования скважин с целью определения параметров пласта.При расчетах перераспределения давления в пласте и соответственно изменения давления на забоях одних скважин, в результате пуска - остановки или изменения режима работы других скважин, разрабатывающих пласт.При расчетах изменения давления на начальном контуре нефтеносности месторождения или средневзвешенного по площади нефтеносности пластового давления при заданном во времени поступлении воды в нефтеносную часть из законтурной области месторождения.При расчетах восстановления давления на контуре нефтеносного пласта в случае перехода на разработку месторождения с применением заводнения или при расчетах утечки воды в законтурную область пласта, если задано давление на контуре нефтеносности.При определении времени, в течение которого в каком - либо элементе системы разработки с воздействием на паст с помощью заводнения наступит установившийся режим.На основе теории упругого режима создан наиболее известный в практике разработки нефтяных месторождений метод определения параметров пласта по кривым восстановления давления в остановленных скважинах (метод КВД).[1]Режимом работы залежи называется проявление преобладающего вида пластовой энергии в процессе разработки. Энергия - это физическая величина, определяющая способность тел совершать работу. Работа, применительно к нефтедобыче, представляется как разность энергий или освободившаяся энергия, необходимая для перемещения нефти в пласте и дальше на поверхность. Различаем естественную и в случае ввода извне, с поверхности искусственную пластовые энергии. Они выражаются в виде потенциальной энергии как энергии положения и энергии упругой деформации. Потенциальная энергия упругой деформации ,(2.5.)где: - сила, равная произведению давления p на площадь F; - линейная деформация (расширение). Так как приращение объема , то (2.6.)Приращение объема при упругой деформации можно представить, исходя из закона Гука, через объемный коэффициент упругости среды (2.7.)то:(2.8.)Следовательно, чем больше упругость и объем среды (воды, нефти, газа, породы), давление и возможное снижение давления , тем больше потенциальная энергия упругой деформации. [3]Отсюда следует, что основными источниками пластовой энергии служат: энергия напора (положения) пластовой воды (контурной, подошвенной); - энергия напора (положения) нефти. - энергия расширения свободного газа (газа газовой шапки); - энергия расширения растворенного в нефти газа; - энергия упругости (упругой деформации) жидкости (воды, нефти) и породы; Энергии этих видов могут проявляться в залежи совместно, а энергия упругости нефти, воды, породы наблюдается всегда. В нефтегазовых залежах в присводовой части активную роль играет энергия газовой шапки, а в приконтурных зонах - энергия напора или упругости пластовой воды. В зависимости от темпа отбора нефти добывающие скважины, расположенные вблизи внешнего контура нефтеносности, могут создавать такой экранирующий эффект, при котором в центре залежи действует в основном энергия расширения растворенного газа, а на периферии - энергия напора или упругости пластовой воды и т. д. Эффективность расходования пластовой энергии, т. е. количество получаемой нефти на единицу уменьшения величины энергии, зависит от вида и начальных запасов энергии, способов и темпа отбора нефти. На основании изложенного можно сказать, что значение пластовой энергии зависит от давления, упругости жидкости (нефти, воды) и породы, газосодержания, объемов воды и газа, связанных с нефтяной залежью. Искусственная энергия вводится в пласт при закачке в нагнетательные скважины воды, газа, пара и различных растворов. Пластовая энергия расходуется на преодоление разного рода сил сопротивления, гравитационных, капиллярных сил при перемещении нефти и проявляется в процессе снижения давления, создания депрессии на пласт-коллектор (разности между пластовым и забойным давлениями). По преобладающему виду энергии различают следующие режимы работы нефтяных залежей: упругий; водонапорный; растворенного газа; газонапорный; гравитационный; смешанные. Такое деление на режимы в “чистом виде” весьма условно. При реальной разработке месторождений в основном отмечают смешанные режимы. В практике разработки и эксплуатации нефтяных и газовых месторождений в пластах часто возникают неустановившиеся процессы, связанные с пуском или остановкой скважин, с изменением темпов отбора флюида из скважин. Характер этих процессов проявляется в перераспределении пластового давления, в изменениях во времени скоростей фильтрационных потоков, дебитов скважин и.т.д. Особенности этих неустановившихся процессов зависят от упругих свойств пластов и насыщающих их жидкостей. Это означает, что основной формой пластовой энергии, обеспечивающей приток жидкости к скважинам в этих процессах, является энергия упругой деформации жидкостей (нефти и воды) и материала пласта.[3]При этом, для проявления упругих сил необходимо, чтобы фильтрационный поток был однофазным, т.е. давление в любой точке потока должно быть выше давления насыщения жидкости газом.При пуске скважины в эксплуатацию в условиях упругого режима движение жидкости начинается за счет использования потенциальной энергии упругой деформации пласта и жидкости сначала в ближайших окрестностях забоя, затем во все более удаленных областях.При снижении пластового давления объем сжатой жидкости увеличивается, а объем порового пространства сокращается за счет расширения материала пласта. Все это способствует вытеснению жидкости из пласта в скважину. Хотя коэффициенты объемной упругой деформации жидкости и породы пласта очень малы, но зато очень велики бывают объемы пласта и насыщающих его флюидов, поэтому объемы жидкости, извлекаемой из пласта за счет упругости пласта и жидкости, могут быть весьма значительными.В некоторых случаях приток жидкости к забоям скважин поддерживается и напором воды, поступающей в пласт из области питания. Тогда режим пласта следует называть упруговодонапорным. Различают и второю разновидность упругого режима - замкнуто-упругий режим. Встречаются залежи нефти в закрытых со всех сторон пластовых «ловушках», когда на небольших расстояниях от нефтяной залежи продуктивный пласт либо выклинивается, либо экранирован сбросом. В начальной стадии разработки такой залежи, до тех пор пока пластовое давление не снизилось до давления насыщения, имеет место замкнуто-упругий режим фильтрации.Характерная особенность проявления упругого режима в процессе разработки нефтяных и газовых месторождений - длительность процесса перераспределения пластового давления после начала работы скважины или изменения темпа отбора жидкости из скважины. Это связано с тем, что при фильтрации вязкой жидкости в пласте возникают очень большие силы сопротивления. Неустановившиеся процессы протекают тем быстрее, чем больше коэффициент проницаемости k, и тем медленнее, чем больше вязкость жидкости η и коэффициенты объемной упругости жидкости βж и пласта βс.Под упругим запасом жидкости в пласте понимается количество жидкости, которое можно извлечь из пласта при снижении давления в нем за счет объемной упругости пласта и насыщающих его жидкостей.Чтобы при приемлемом темпе снижения среднего давления в пласте Рпл за разумные сроки отобрать запасы нефти, нужно иметь очень большое отношение объема упругой системы к геологическим запасам нефти. При разработке залежи в условиях упругого режима быстрое понижение давления происходит в пределах самой залежи, а во всей системе, питающей залежь упругой энергией давления (в законтурной области), снижается медленно.[3] Из сказанного не следует, что упругий режим и связанные с ними процессы играют незначительную роль при добыче нефти. При определенных благоприятных условиях весь запас нефти может быть извлечен за счет упругого режима (при большой упруго-водонапорной системе). Последний играет существенную роль при переходных процессах, возникающих в результате изменения режимов работы скважин. При этом в пласте происходят затяжные процессы перераспределения давления, протекающие по законам упругого режима.Изучение гидродинамических основ упругого режима фильтрации имеет важнейшее значение для теории и практики разработки нефтяных и газовых месторождений. Знание этих основ позволяет в наиболее полной мере использовать упругий запас пластовых флюидов для обеспечения притока к скважинам, правильно определять потенциальные возможности упругой водонапорной системы для вытеснения флюидов, ставить и решать так называемые обратные задачи определения коллекторских свойств пластов по наблюдениям за изменением дебитов или давлений и т.д. Как правило, при естественном упругом режиме добывается незначительная часть извлекаемых запасов (до 2-5%). Однако известны случаи, когда упругий запас настолько велик, что позволяет отобрать гораздо больше. Так, например, на крупнейшем месторождении Тенгиз при упругом режиме будет отобрано около 20% запасов нефти.2.2. Исследования в скважинах как важное приложение теории упругого режима фильтрацииЕсли давление на забое Рс, а тем более пластовое Рк превышает давление насыщения Рнас, то предполагается, что перераспределение давления в пласте после любых возмущений происходит по законам упругого режима. В подземной гидродинамике рассматривается задача притока упругой жидкости к скважине в бесконечном упругом пласте после ее внезапного пуска или остановки. Решением этой задачи является формула(2.9.)Физическая интерпретация этой формулы следующая: p(r,t) означает изменение давления в упругом пласте в точке М, удаленной от точки возмущения - скважины на расстояние r через время t после начала возмущения.В данном случае под возмущением понимается либо пуск скважины с дебитом Q, либо внезапная остановка скважины, работавшей перед этим длительное время, с дебитом Q (Q - расход при стандартных условиях). При пуске скважины давление в точке М уменьшается на P по сравнению с первоначальным, а при внезапной остановке скважины, длительно работавшей с дебитом Q, P - увеличение давления в точке М по сравнению с первоначальным, Еi (-х), где x = r2/4t - специальная табулированная экспоненциальная функция, значения которой можно найти в таблицах специальных функций. Здесь = k/x - пьезопроводность, причем x - приведенный объемный коэффициент упругости среды (вода, нефть, порода), t - время с момента пуска или остановки скважины.[2]Решение (2.9.) является строго аналитическим, поэтому оно справедливо для любых радиусов и в частности для радиуса r, равного радиусу скважины rс. В этом случае формула (2.9.) будет описывать закон изменения давления на стенки самой скважины и является характеристикой процесса “самопрослушивания” скважины. Таким образом, если остановить скважину и зарегистрировать изменение во времени давления на забое скважины, можно будет найти те параметры пласта, при которых закон изменения P(t) совпадет с фактически зарегистрированным. Для практического использования формулу (2.9) несколько упрощают. Дело в том, что при исследовании скважин на неустановившихся режимах, т. е. при самопрослушивании, приходится иметь дело с малыми значениями аргумента x = rc2/4t, так как rс - радиус скважины мал, a t составляет сотни и тысячи секунд.При малых значениях х экспоненциальная функция хорошо аппроксимируется логарифмической функцией Ei(-х)= Ln(х)+0,5772,где 0,5772 - постоянная Эйлера. [2]Поэтому формулу (2.9.) можно переписать следующим образом: (2.10.)Вводя знак минус в скобки и учитывая, что Ln (e) = 1, можем записать:.Но e0,5772 = 1,781.Следовательно,или (2.11.)Обычно числовой коэффициент под логарифмом округляют, так что 2,24587 = 2,25. Итак, если остановить скважину, работавшую с дебитом Q, то на ее забое давление начнет повышаться в зависимости от времени t согласно формуле (2.11.). При этом предполагают, что режим упругий и давление на забое больше давления насыщения.На формуле (2.11.) основана методика исследования скважины при неустановившихся режимах. Следует отметить, что формула (2.11.) предполагает мгновенную остановку скважины (при t=0, Q=0). Это равносильно срабатыванию крана или клапана непосредственно на забое скважины. В действительности остановка, например, фонтанной скважины производится на устье путем закрытия задвижки. В НКТ находится газожидкостная смесь, которая после остановки начнет сжиматься под действием возрастающего забойного давления. В затрубном пространстве также произойдет рост давления и сжатие газовой шапки. Мгновенной остановки скважины не произойдет, а будет продолжающийся последующий затухающий приток жидкости из пласта в скважину, чего формула (2.11.) не предусматривает. Поэтому последующий приток является источником некоторых погрешностей, которые возможно исключить путем специальной обработки фактических данных. Возвращаясь к формуле (2.11.), перепишем ее так, чтобы время t было выделено, а именно (2.12.)Обозначим:(2.13.)(2.14.) Тогда (2.12.) перепишется так:.А это есть уравнение прямой, не проходящей через начало координат.Отсюда следует правило, что фактически снятая на забое скважины кривая восстановления давления (КВД) Р(t), перестроенная в полулогарифмических координатах y = P, x = Lnt, должна иметь вид прямой отсекающей на оси у ординату а, значение которой определяется формулой (2.13.), и имеющей угловой коэффициент b, определяемый формулой (2.14.). КВД на забое скважины записывается регистрирующим скважинным манометром с автономной или дистанционной записью показаний. Такой манометр, спускаемый на забой скважины до ее остановки, дает запись изменения Pс в функции времени t. Поэтому фактическую кривую P(t) необходимо перестроить в координаты P(Lnt) и найти ее постоянные коэффициенты а и b (рис. 2.2.). Начальный участок КВД не укладывается на прямую, что связано частично с последующим притоком, о котором было сказано выше, и инерцией масс жидкости, которые вообще не учитываются формулой (2.12.). а бРис. 2.2. Записанная манометром (а) и перестроенная в полулогарифмические координаты (б) кривая восстановления давления в остановленной скважинеНа перестроенной кривой P(Lnt) отыскивается прямолинейный участок, по двум точкам которого определяется угловой коэффициент(2.15.)Вычислив b, можем определить из формулы (2.10.) гидропроводность = kh/:(2.16.)Зная , легко найти проницаемость k.Отрезок а на оси ординат можно получить либо графическим построением, либо аналитически. Из формулы (2.12.) имеем:или, подставляя b, получим,(2.17.)Pi и Lnti - ордината и абсцисса любой точки прямой. Поделив все на b и разложив логарифмы, можно выражение (2.17.) переписать следующим образом:откуда,(2.18.)(Ln2,25 = 0,80909). Учитывая, что Lnе = 1, можно (2.18.) переписать так:После преобразования получим: ,(2.19.) По формуле (2.19.) определяется комплекс . Если по другим данным известна пьезопроводность , то можно определить приведенный радиус скважины rпр, учитывающий гидродинамическое несовершенство скважины, так как известно, что для перехода от совершенной скважины с радиусом rc к несовершенной достаточно подставить вместо радиуса скважины rпр.Параметры пласта, определенные по КВД описанным методом, характерны для удаленных зон пласта. Аналогично методом неустановившихся режимов исследуются нагнетательные скважины. Поскольку в нагнетательных скважинах ствол полностью заполнен жидкостью, то погрешности, связанные с явлениями последующего притока, в данном случае не возникают. Кроме того, отсутствие газированного столба жидкости в скважине позволяет измерять давления непосредственно на устье, добавляя к этим показаниям гидростатическое давление столба жидкости в скважине.[7]Для снятия КВД нагнетательной скважины, работавшей длительное время с дебитом Q, в принципе достаточно на устье закрыть задвижку, т. е. прекратить закачку и снять кривую падения давления P = f(t) на устье. Величина P определяется как разность между давлением на устье при установившемся режиме закачки, т. е. давлением нагнетания, и текущим давлением на устье после прекращения закачки.Обработка полученных данных для определения пластовых параметров не отличается от описанной выше. Аналитический аппарат для обработки результатов исследования добывающих и нагнетательных скважин на неустановившихся режимах, описанный выше, пригоден и для обработки результатов при ступенчатом изменении дебита на величину Q. Ступенчатое изменение дебита может быть достигнуто сменой штуцера или прикрытием задвижки. При этом скважинным манометром фиксируется КВД P(t) при переходе от начального дебита Q1 к новому дебиту Q2, изменившемуся на величину Q = Q2 - Ql. В соответствующие формулы вместо Q необходимо подставить Q. В остальном обработка остается прежней.Аналогичные приемы используются и для так называемого гидропрослушивания пласта. В этом случае в одной скважине вызывается возмущение, т. е. пуск или остановка (начало закачки или прекращение), а в другой - удаленной или в нескольких скважинах - реагирующих фиксируется изменение давления во времени. Для обработки результатов используется также формула (2.9.), причем за величину r принимается расстояние между скважинами, за t - время, истекшее с начала возмущения, а за Q - дебит остановленной добывающей или нагнетательной скважины. Поскольку на подобные возмущения удаленные скважины реагируют слабо, то при гидропрослушивании в реагирующих скважинах замеряют изменения статического уровня с помощью опускаемых приборов - пьезографов.Ранее было отмечено некоторое несоответствие реально протекающего процесса восстановления давления и закрытия скважины, сопровождаемое последующим притоком, с используемым математическим аппаратом, предусматривающим мгновенную остановку скважины. Для устранения этого несоответствия очень многими исследователями были разработаны методы обработки КВД и ряда других дополнительных данных, позволяющих учитывать последующий приток, вносить поправки в линию P(Lnt) и существенно увеличить число точек на прямолинейном участке кривой. Для того чтобы обработать КВД с учетом притока, необходимо знать этот последующий приток в функции времени. Его измеряют хорошо оттарированным и достаточно чувствительным скважинным дебитомером. Однако такие измерения можно произвести только в фонтанных и газлифтных скважинах, в которых НКТ свободны для спуска прибора.Последующий приток можно определить косвенным путем, хотя и менее точно. Для этого после остановки фонтанной или газлифтной скважины с помощью образцовых манометров записываются изменения давления в затрубном пространстве и на устье скважины. Кроме того, имеется КВД, записанная на забое скважины. Разбивая весь процесс восстановления давления на интервалы по времени и располагая указанными выше данными, которые также разбиваются на те же интервалы по времени, а также зная площади сечения кольцевого пространства и НКТ, можно вычислить объемы жидкости, поступившие в кольцевое пространство и НКТ в течение соответствующего интервала времени
Очень похожие работы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.
bmt: 0.00501
© Рефератбанк, 2002 - 2024