Вход

Статика

Курсовая работа
Дата создания 09.04.2016
Страниц 38
Источников 7
Вы будете перенаправлены на сайт нашего партнёра, где сможете оформить покупку данной работы.
1 584руб.
КУПИТЬ

Содержание

СОДЕРЖАНИЕ АННОТАЦИЯ 3 1 Расчет плоской шарнирной фермы 4 1.1 Исходные данные 4 1.2 Определение опорных реакций аналитическим способом 5 1.3 Определение опорных реакций графическим способом 6 1.4 Определение усилий в стержнях фермы аналитическим методом вырезания узлов 8 1.5 Определение усилий в стержнях фермы графическим методом вырезания узлов 15 1.6 Определение усилий в стержнях фермы построением диаграммы Максвелла-Креморы 17 1.7 Определение усилий в стержнях фермы методом Риттера 19 2 РАСЧЕТ ПЛОСКИХ СОСТАВНЫХ КОНСТРУКЦИЙ 23 2.1 Исходные данные 23 2.2 Решение задачи по схеме 111 23 2.3 Решение задачи по схеме 211 26 2.4 Решение задачи по схеме 311 28 2.5 Решение задачи по схеме 411 30 3 РАСЧЕТ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ 34 3.1 Исходные данные 34 3.2 Решение задания по схеме П11 34 ВЫВОДЫ 37 СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 38 Содержание

Фрагмент работы для ознакомления

Рассмотрим равновесие всей конструкции как абсолютно твердого тела, освободив ее от связей в точках А и В. Расчетная схема представлена на рис. 18. Рис.18 Используемые обозначения: , - составляющие реакции заделки; , - составляющие реакции опоры; - равнодействующая распределенной нагрузки, модуль которой кН. Т. к. не требуется считать неизвестные и , будем работать с теми уравнениями, где отсутствуют эти величины. Рассмотрим равновесие балки ВС ; . (23) Из уравнения (23) . Рассмотрим равновесие всей конструкции, приняв ее монолитной: ; . (24) Из уравнения (24), совместно с уравнением (23): кН. Рассмотрим равновесие балки АС: ; . (25) Из уравнения (25) . Тогда из уравнения (23) кН. Таким образом, кН; кН. 2.4 Решение задачи по схеме 311 Рис. 19 Конструкция (рис. 19) состоит из трех частей: горизонтальной балки АС, наклонной балки CD и еще одной горизонтальной балки BD. В точке А балка АС закреплена с помощью жесткой заделки, точка В горизонтальной балки соединена со стеной посредством неподвижной шарнирной опоры. Наклонная балка с двух сторон соединена с горизонтальными щарнирной опорой в точках С и D. К балкам CD и BD приложена равномерно распределенная нагрузка интенсивности q, а на балку АС действует сила F, направленная под углом β. Определить составляющие реакции опор В и D - и . Рассмотрим равновесие всей конструкции как абсолютно твердого тела, освободив ее от связей в точках А и В. Расчетная схема представлена на рис. 20. Рис. 20 Равнодействующая равномерно распределенной нагрузки приложена в середине участков CD и BD, а ее модуль соответственно определяется по формулам: кН; кН. Т. к. не требуется считать неизвестные , и , будем работать с теми уравнениями, где отсутствуют эти величины. Для этого рассмотрим отдельно равновесие балки BD (рис. 21). Рис. 21 Реакции и определять не нужно. Составляем такие уравнения, в которые эти величины не входят: ; ; (26) ; . (27) Из уравнения (26) кН. Из уравнения (27) кН. Таким образом, кН. 2.5 Решение задачи по схеме 411 Рис. 22 Конструкция (рис. 22) состоит из двух частей: горизонтальной балки АС и наклонной балки ВС. Балки прикреплены к стене и связаны между собой с помощью цилиндрических шарниров А, В и С. К точке Е наклонной балки привязана нить, перекинутая через блок и несущая груз Р. Кроме того, на балку АС действует сила F под углом β, а на балку ВС действует пара сил с моментом М. Определить составляющие реакции опор , и . Расчленим конструкцию на две части: горизонтальную балку АС с блоком и грузом Р и наклонную балку ВС, освободив ее от внешних связей – шарниров А и В и от внутренних связей – шарнира С и горизонтальной части нити. Расчетные схемы изображены на рис. 23. Рис. 23 Т.к. нить невесомая, а трением на блоке пренебрегаем, то . Составим уравнения равновесия балки ВС: ; ; (28) ; ; (29) ; . (30) Система уравнений содержит четыре неизвестных. Ее нужно дополнить системой уравнений равновесия совокупности тел – балки AD, блока D и груза Р: ; ; (31) ; ; (32) ; . (33) Решая систему уравнений (28)-(33) находим неизвестные. Из уравнения (33) кН. Из уравнения (32) кН. Из уравнения (29) кН. Из уравнения (30) кН. Из уравнения (28) кН. Из уравнения (31) кН. Таким образом кН; кН; кН; кН; кН; кН. Силы , , , противоположны направлениям, принятым на расчетных схемах. 3 РАСЧЕТ ПРОСТРАНСТВЕННОЙ КОНСТРУКЦИИ 3.1 Исходные данные Общая схема задания представлена на рис. 24, данные для расчета представлены в таблице 8. Рис. 24 Таблица 8 F, кН P, кН a, м b, м c, м α, град β, град 5 3 4 1 5 45 75 3.2 Решение задания по схеме П11 Однородная квадратная плита АВСD со стороной с и веса Р закреплена в точке А при помощи шарового шарнира, а в точке В – при помощи цилиндрического шарнира. Сторона АВ горизонтальна. В точке D плита закреплена на стержне, который шарниром крепится к опоре под углом α. Найти реакции в точках А, В и D. Рассмотрим равновесие плиты. На нее действует активная сила Р (сила тяжести), приложенная в точке пересечения диагоналей плиты и сила F, действующая под углом β к плоскости. На плиту наложено три связи: шаровой шарнир А, цилиндрический шарнир В и стержневая опора ED. Мысленно отбрасывая связи, заменяем их действие на плиту силами реакций. Рис. 25 Так как число неизвестных равно шести, то задача является статически определенной. Составим уравнение равновесия плиты, находящейся под действием произвольной пространственной системы сил , , , , , , , . ; ; (34) ; ; (35) ; ; (36) ; ; (37) ; ; (38) ; . (39) Решим систему уравнений (34)-(39). Из уравнения (37) кН. Из уравнения (39) кН. Из уравнения (38) кН. Из уравнения (36) кН. Из уравнения (35) кН. Таким образом, кН; кН; кН; кН; кН; кН. Заметим, что реальные направления реакций , противоположны их направлениям, выбранным при расчете. ВЫВОДЫ В процессе выполнения курсовой работы освоены основные принципы исследования равновесия твердых тел и их систем, с использованием аналитических условий равновесия различных систем сил для определения реакций опор и усилий в элементах конструкций. В частности просчитаны реакции опор и усилия в стержнях фермы аналитическим и графическим методом вырезания узлов, построением диаграммы Максвелла-Кремоны и методом Риттера; просчитаны требуемые по заданию реакции опор или их составляющие в плоских составных конструкциях; просчитаны реакции опор пространственной конструкции. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ Бертяев В.Д. Курсовая работа по статике «Расчет плоских и пространственных конструкций»: Учеб. пособие / В.Д. Бертяев, В.И. Латышев, С.С. Маркелов, Тула: Изд–во ТулГУ, 2011.— 79 с. Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Т.1 (Статика и кинематика) – М.: Наука, 1990. Яблонский А.А., Никифорова В.М. Курс теоретической механики. Т.1 – М.: Высшая школа, 1984. Тарг С.М. Краткий курс теоретической механики – М.: Государственное издательство физико-математической литературы, 1961. Бертяев В.Д. Теоретическая механика на базе Mathcad практикум – СПб.: БХВ – Петербург, 2005. Сборник заданий для курсовых работ по теоретической механике. Под. ред. А.А. Яблонского. – М.: Высшая школа, 1983. -367 с.

Список литературы

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Бертяев В.Д. Курсовая работа по статике «Расчет плоских и пространственных конструкций»: Учеб. пособие / В.Д. Бертяев, В.И. Латышев, С.С. Маркелов, Тула: Изд–во ТулГУ, 2011.— 79 с. 2. Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Т.1 (Статика и кинематика) – М.: Наука, 1990. 3. Яблонский А.А., Никифорова В.М. Курс теоретической механики. Т.1 – М.: Высшая школа, 1984. 4. Тарг С.М. Краткий курс теоретической механики – М.: Государственное издательство физико-математической литературы, 1961. 5. Бертяев В.Д. Теоретическая механика на базе Mathcad практикум – СПб.: БХВ – Петербург, 2005. 6. Сборник заданий для курсовых работ по теоретической механике. Под. ред. А.А. Яблонского. – М.: Высшая школа, 1983. -367 с. список литературы
Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.
Сколько стоит
заказать работу?
1
Заполните заявку - это бесплатно и ни к чему вас не обязывает. Окончательное решение вы принимаете после ознакомления с условиями выполнения работы.
2
Менеджер оценивает работу и сообщает вам стоимость и сроки.
3
Вы вносите предоплату 25% и мы приступаем к работе.
4
Менеджер найдёт лучшего автора по вашей теме, проконтролирует выполнение работы и сделает всё, чтобы вы остались довольны.
5
Автор примет во внимание все ваши пожелания и требования вуза, оформит работу согласно ГОСТам, произведёт необходимые доработки БЕСПЛАТНО.
6
Контроль качества проверит работу на уникальность.
7
Готово! Осталось внести доплату и работу можно скачать в личном кабинете.
После нажатия кнопки "Узнать стоимость" вы будете перенаправлены на сайт нашего официального партнёра Zaochnik.com
© Рефератбанк, 2002 - 2017