Вход

Структура грамицидинового канала, его фундаментальное и практическое значение

Реферат* по биологии
Дата добавления: 12 августа 2008
Язык реферата: Русский
Word, rtf, 4.7 Мб
Реферат можно скачать бесплатно
Скачать
Данная работа не подходит - план Б:
Создаете заказ
Выбираете исполнителя
Готовый результат
Исполнители предлагают свои условия
Автор работает
Заказать
Не подходит данная работа?
Вы можете заказать написание любой учебной работы на любую тему.
Заказать новую работу
* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.
Очень похожие работы

Содержание:

1. Введение

2. Химическая природа грамицидина А и его общие свойства

3. Биологическая роль грамицидина А

4. Структура грамицидина А

4.1 Конформации грамицидина А в органических растворителях

4.2 Структура грамицидина А в липидных мембранах и мембрано- подобных средах

4.3 Влияние связывания катионов на конформацию грамицидина А

4.4 Взаимоотношения между конформационными состояниями грамицидина А и проводящими формами.

4.5 Инженерия грамицидинового канала

5. Фундаментальное и практическое значение грамицидина А

6. Выводы

7. Список использованной литературы

1. Введение

Грамицидин А известен уже более 50 лет, но до сих пор остается в центре внимания. Являясь очень простым по своей химической структуре (всего 15 аминокислот) он обладает свойством образовывать ионселективный трансмембранный канал, не уступающий по характеристикам огромным по сравнению с ним белковым каналам, которые представлены, например, в нервной системе. Возможно, он является предшественником этих самых каналов и за время эволюции “оброс” всевозможными сенсорами напряжения, селективными фильтрами и другими регуляторными элементами. Если продолжать такое сравнение, то в плане детальной трехмерной структуры так мы пока не знаем ни один другой ионный канал, и применение грамицидина А для построения всевозможных моделей и теоретических исследований стало одним из путей к детальному пониманию различных молекулярных механизмов и структурно-функциональных взаимодействий. И, пожалуй, грамицидин А является одной из лучших таких моделей.

 2. Химическая природа грамицидина А и общие свойства

Грамицидин А входит в группу линейных полипептидов, продуцируемых бактериями Bacillus Brevis, на стадии спорообразования. Выделяют несколько особенностей данной группы пептидных антибиотиков:

1) Все 15 аминокислот входящие в состав последовательности грамицидинов являются гидрофобными;

2) В их последовательности наблюдается чередование L- и D- конфигураций аминокислот;

3) С - и N- конец грамицидинов блокированны с помощью этаноламина и формила соответственно.

Природня смесь (грамицидин D) состоит из трех основных компонентов, отличающихся одной аминокислотой в 11 положении, . Согласно этому отличию грамицидины классифицируют на: грамицидин А - в 11 положении Trp, грамицидин B - в одиннадцатом положении - Phe, и грамицидин С - в одннадцатом положении - Tyr.

Общая последовательность грамицидинов :

HCO-(L)Val-Gly-(L)Ala-(D)Leu-(L)Ala-(D)Val-(L)Val-(D)Val-(L)Trp-(D)Leu-

 1 2 3 4 5 6 7 8 9 10

 X-(D)Leu-(L)Trp-(D)leu-(L)Trp-NH2CH2CH2OH

 11 12 13 14 15

где Х= L-Trp для грамицидина А,

 L-Phe для грамицидина В,

 L-Tyr для грамицидина С.

Грамицидин А, В и С представленны в соотнощении 85:5:15 соответственно. Ко всему прочему имеется некоторая гетерогенность по первой аминокислоте: в природной смеси 90% грамицидинов имеют в первом положении Val, в то время как остальные 10% имеют Ile. Большинство начальных исследований было проведенно на этой 6-ти компонентной смеси.

Грамицидин К – имеющий ковалентно присоеденную жирную кислоту к С-концу так же был выделен в различных соотношениях, в зависимости от метода выделения.

Грамицидин S ( Советский ), так же продуцируется видом Bacillus Brevis, но является циклодекапептидом и действует по механизму ионного переносчиика (транспортера), и таким образом эта молекула не имеет отношения к линейным грамицидинам ни структурно, ни функционально.

Благодаря тому, что в последовательности грамицидина А нет ни одной заряженной аминокислоты и блокированны N- и С-конец (таким образом исключается возвожность образования цвиттер-иона при любых значениях рН), эта молекула практически нерастворима в воде ( меньше 10 мг в литре), но за то имеет сильное сродство с гидрофобному региону липидной мембраны. Грамицидин А слабо растворим в углеводородах, за то сильно во многих низших спиртах, органических кислотах и других органических растворителях, таких как: диметилсульфоксид, ацетон, диоксан и трифторэтанол. Он так же может быть растворенн в воде в присутствии лизолецитина, ганглиозидов, додецилсульфата натрия и некоторых других детергентов.

Начальные исследования грамицидина были проделанны на природной смеси, но после выяснения состава данной смеси дальнейшие эксперименты проводились на грамицидине А, как основном компоненте природной смеси.

3. Биологическая роль грамицидина А

Грамицидин играет важную роль в процессе спророобразования у Bacillus brevis, определяя формирование нормальных спор. Показано, что штаммы, деффекные по синтезу грамицидина формируют споры с повышенной термочуствительностью. Грамицидин А спецефически ингибирует экспрессию отдельных (вегетативных) генов, определяя, таким образом, переход микроорганизма в покоящуюся стадию. Механизм такой регуляции до конца не ясен, но известно, что грамицидин А препятствует образованию комплекса РНК-полимеразы с ДНК, необходимого для инициации транскрипции. Предложенно две мишени связывания грамицидина: 1) грамицидин А специфически связывается с определенным участком ДНК и препядствует транскрипции. Такой механизм похож на действие другого пептидного антибиотика - тироцидина, так же синтезируемоего Bacillus brevis, который, связываясь с молекулой ДНК, препятствует образованию комплекса РНК-полимераза/ДНК, и как следствие ингибирует экспрессию определенных генов; 2) грамицидин А связывается с определенным участком РНК-полимеразы, чо приводит к изменению ее конформации и невозможностью связывания с ДНК .

 Возможно грамицидин А учавствует в сложном каскаде биохимических процессов вместе с другими антибиотиками (тироцидинысерия циклических пептидов, так же синтезируемых видом Bacillus brevis на стадии спорообразования), результатом которых является переход от вегетативного роста к споре.

Линейные грамицидины обладают антибиотическим и спермицидным эффектом направленным против грамположительных бактерий. Антибиотический эффект грамицидина определяется его способностью обрзовывать трансмембранный ионный канал, при чем этот эффект носит бактериостатический характер, что, по-видимому связано с истощением запасов АТФ, в организме на который действует грамицидин, который использует Na-K-АТФаза для востановления ионного градиента .

4. Структура грамицидина А

Не смотря на довольно простую первичную последовтельность грамицидина, определение природы его трехмерной структуры, не было стремительным и быстрым. Из-за его небольших размеров и, как следствие, сильной подвижности грамицидин, в зависимости от окружения, может существовать в виде семейства конформаций. Выделяют два основных типа структуры грамицидина: 1) Семейство двойных спиралей, предложенных Витчом (1974, [10] ) и существующих в органических растворителях; 2) Семейство одиночных спиралей, предложенных Урри [11] и существующих в липидных мембранах.

В связи с необычностью химической структуры грамицидина, связаной с чередованием конфигураций входящих в его последовательность аминокислот стандартная номенклатура не может быть применена для данной модели, так как грамицидин не формирует ни одного типа структур, имеющихся в глобулярных белках.

Анализируя спектры КД грамицидина, а так же основываясь на теоретических расчетах конформационных энергий Урри и сотр. (1971 г. [11]) постулировали существование особой вторичной структуры, названной 4(L,D)-спиралью, являющейся гибридом 4,416 и 4,314 спиралей (4,4 – количество остатков на виток, 16 – количество атомов в витке). Рамачандран и Чандрасекаран [12], базируясь в основном на конформационно-энергетических взаимодействиях независимо обнаружили такую же вторичную структуру. Позже Урри и сотр. [13] предложили другую модель конформации грамицидина - 6(L,D) спираль, имеющую 6,3 остатка на виток и центральную полость размером 4 Ǻ, которая больше подходит для связывания и транспорта катионов, чем полость в 1,4 Ǻ, имеющаяся в 4(L,D) спирали. Димер полипептидных цепей, ассоциированных конец к концу (N-конец к N-концу, С-конец к С-концу или N-конец к С-концу) с конформацией 6(L,D) спираль имеет размер 25-30 Ǻ и, таким образом, может пронизывать липидный бислой и образовывать трансмембранный канал (Рис1А). Каждая спираль стабилизируется 12-ю внутримолекулярныму водородными связями, а димер (при любых способах ассоциации) – при помощи 6-ти межмолекулярных водородных связей.

Альтернативной структурой, предложенной Витчом и сотр в 1974 году [10] , является двойная  - спираль, в которой два мономера закрученны друг на друга. Ассоциация между мономерами в такой спирали может быть как параллельной (), так и антипараллельной (). Расположение водородных связей в двойных спиралях грамицидна такое же как и в -слое, который, как было предположенно, и образуется сначала между двумя молекулами грамицидина, а затем сворачивается в спираль. Витч и сотр. Так же предложили, что такие спирали с 6-7 остатками на виток будут иметь размеры, подходящие для пронизывания липидного бислоя и транспорта ионов. Дальнейшие исследования такого типа моделей показали возможность существования антипараллельных двойных спиралей с 5,6 и 7,2 остатка на виток (рис1Б).

Схематическое изображение спиральных димеров (структура Урри) (А) и двухспиральных димеров (структура Витча) (В) грамицидина.

Так же, в обоих типах предложенных структур, боковые цепи аминокислон располагаются с наружней стороны спирали и ни одной боковой цепи нет во внутренней полости. В результате внутренняя полость (пора ) данных спиралей намного больше таковой для -спиралей. Это связанно с природой β-слоя: в последовательностях имеющих только L-аминокислоты, при образовании -слоя боковые цепи обращены поочередно в разные стороны от плоскости слоя, а в случае чередования L- и D-аминокислот все боковые радикалы будут обращены в одну сторону от плоскости β-слоя и , таким образом при сворачивании такой структуры в спираль они все окажутся снаружи, а внутри образуется пора , выстланная карбонильными группами пептидных связей, способная пропускать воду и ионы.

2.3.Конформация грамицидина А в растворе

Грамицидин принимает несколько типов конформаций в органических растворителях. Витч и сотр. [10, 15, 16] обнаружили, что диоксане грамицидин существует в виде 4-х различных форм, переходящих друг в друга и находящихся в медленном равновесии (время перехода одной формы в другую измеряется часами). Все четыре формы были разделены методом тонкослойной хроматографии, при чем каждая отдельная форма, выделенная с тонкослойной пластинки и нанесенная заново, опять проявлялась в виде четырех пятен. Различные формы не показали различий в первичной структуре. Данные осмометрии и флуресценции [16], показали, что каждая из четурех форм является димером. Методом ИК-спектроскопии [10] было показанно, что все формы являются двойными спиралями, при чем формы 1,2 и 4 ( пронумерованны согласно их хроматографической подвижноси) являются параллельными двойными спиралями, а форма 3 – антипараллельной двойной спиралью [10]. Каждый из видов имеет характерный КД-спектр, дающий информацию о направлении закручивания спирали. Так как спектры видов 1 и 2 имеют одинаковую форму, Витч и сотр. предложили, что они имеют одинаковое направление закручивания [10]. Формы 1,2 и 3 имеют отрицательную эллиптичность в области 205-240 нм, направление закручивания спиралей является противоположной по сравнению с видом 4, форма спектра которого представляет собой зеркальное отображение видов 1,2 и 3.

Спектр грамицидина, полученный сразу после растворения кристаллов представляет собой спектр формы 3 [10]. Спектр равновесной смеси форм представляет собой наложение спектров отдельных форм, но за счет того, что спектры 1,2 и 4 практически взаимовычитают друг друга, он имеет форму вида 3 , даже если она находиться в незначительном количестве по отношению к другим.

Эти структуры были подтвержденны методом двумерного ЯМР [18], и показали что грамицидин в этаноле так же существует в виде 4-х взаимопревращаемых конформаций . Виды 1 и 2 являются левозакрученными параллельными двойными спиралями с 5,6 аминокислотного остатка на виток. Они отличаются взаимным расположением цепей и имеют одинаковый шаг спирали и высоту. Вид 2 имеет менее упорядоченные концы спирали обусловленные сдвигом на три аминокислотных остатка [17].

Вид 4 представляет из себя правозакрученной параллельной двойной спиралью, с таким же взаимным расположением цепей и высотой спирали что и вид 1 (это обуславливает форму его спектра КД, являющуюся зеркальным отображением видов 1 и 2).

Вид 3 (форма, образующаяся сразу после растворения кристаллов грамицидина) является левозакрученной антипараллельной двойной спиральюс 5,6 остатка на виток и сдвигом на три аминокислотных остатка. Эта форма является наиболее термодинамически выгодной в кристаллическом состоянии (рис.2) [19].

Рисунок 2. СРК Изображение левозакрученного антипараллельного двухспирального димера грамицидина с 5,6 остатка на виток (PDB Code: 1ALX). А – вид сверху; Б – вид сбоку. Две молекулы грамицидина в димере показанны разными цветами. Водороды скрыты.

Все описанные спирали стабилизирются 28-ю межмолекулярными водородными связями, не имеют внутримолекулярных водородных связей и совпадают с модельными , предложенными Витчом и сотр [10].

Грамицидин образует такую же смесь конформаций в различных спиртах, этилацетате [6] , и, хотя, время взаимоперехода в этих растворителях меньше

[20] , множественность структур все же удается зарегестрировать методом ЯМР [18].

Исследования грамицидина в растворе DMSO показали, что он находится в виде мономера, и обнаруживается в виде одного пятна на тонкослойной пластинке [16] . Методом ЯМР было показано, что в DMSO грамицидин находится в быстром равновесии между неупорядоченной конформацией и различными спиралями, имеющими другую форму, чем описанные выше [21].

В трифторэтаноле грамицидин представляет собой мономер [22] , а форма спектра КД больше похожа на спектр грамицидина в мембране [23] , и, таким образом, представляет из себя еще один вид трехмерной структуры грамицидина.

Таким образом, грамицидин существует в различных конформациях, в зависимости от растворителя, и даже в виде набора нескольких конформаций в одном растворителе. Такой полиморфизм можно объяснить похожими энергиями стабилизации различных структур, обусловленных различной сетью водородных связей.

2.4.Структура грамицидина в липидных мембранах и мембрано-подобных средах

Спектр КД встроенного в липидный бислой грамицидина не похож ни на один спектр, полученный в различных органических растворителях [24]. Более того данный спектр нельзя представить как сумму какой либо комбинации спектров растворов грамицидина, и, следовательно, как комбинацию каких-то конформаций обнаруженных в растворах. Форма КД спектра мембрансвязанного грамицидина остается неизменной в широком диапазоне температур. С другой стороны, основываясь на данных только спектров КД нельзя сказать, существует ли грамицидин в какой-то одной форме, или же имеется набор конформеров.

Изученные методом ЯМР 13С и 19F меченые грамицидины, встроенные в липосомы [25-27] , показали существование одной доминирующей структуры в мембранах.

Спектр КД мембрансвязанного грамицидина в области дальнего ультрафиолета имеет форму похожую на экситонное расщепление, свидетельствующую о стэкинг взаимодействиях триптофанов в данном окружении [28]. Экситонное расщепление так же наблюдается в области ближнего ультрафиолета [18] . что свидетельствует о внутримолекулярных взаимодействиях (Такого экситонного расщепления не наблюдается в растворах, что является еще одним подтверждением разности конформаций в мембране и в растворе). Другие методы [29, 30] так же подтверждают наличе стэкинг вззаимодействий в мембрансвязанной форме. Данные результаты свидетельствуют о различии в конформации как полипептидного остова, так и в ориентации боковых цепей между мембрансвязанной конформацией и формами, существующими в растворах.

Синхронные исследования флуресценции и проводимости в черных липидных мембранах [31] и в липосомах [32] показывают, что проводящая форма грамицидина является димером. В исследованиях с одиночными каналами (при соотношении грамицидин/липид около 1:10000), регистрация открывания и закрывания канала соотносится с равновесием мономер-димер.

Грамицидин так же образует комплексы с такиими детергентами как лизолецитин [33] , и додецилсульфат натрия [34]. Исследования таких комплексом методом электронной микроскопии (метод замораживания-скалывания) свидетельствуют о наличии мультиламелярной фазы детергента, в то время как с другими белками и пептидами эти детергенты формируют типичную мицелярную фазу , более того данные 15Р и 2Н ЯМР, а так же дифракции ренгеновских лучей при малом угле демонстрируют, что амфифильные группы молекул детергента имеют бислой-подобную организацию. Этот пример – хорошая демонстрация влияния грамицидина на организацию окружающих его молекул липида [35]

Так как детергент в комплексе с грамицидином оразует мембраноподобные структуры, можно предположить, что трехмерная структура грамицидина в данной системе такая же, как и в бислойных мембранах, хотя другие небольшие пептиды часто имеют различную структуру в мицеллах и в липидных бислоях.

Мембрансвязанная форма грамицидина представляет собой спиральный димер, что было подтвержденно различными химическими и физическими методами. Данные ЯМР-спектроскопии с использованием 13С и 19F меченных грамицидинов встроенных в липосомы показали наличие структуры в которой N-конец молекулы расположен посередине бислоя , а С-конец ориентирован наружу [25, 26, 27 ]. ЯМР в твердом теле (ориентированные мультиламелярные бислои ) обнаружил такую же структуру [36]. Изучение проводимости аналогов грамицидина в черных липидных мембранах покзали что модифицированные по С-концу аналоги способны образовывать активные каналы только при добавлении их с двух сторон мембраны и не образуют их при добавлении с одной стороны мембраны. Так как заряженные молекулы не могут переходить с одной стороны мембраны на другую – это явилось еще одним подтверждением того, что мембрансвязанная форма является спиральным димером N-конец к N-концу

В спиральном димере N-конец к N-концу каждый мономер стабилизирован 12-ю внутимолекулярными водородными связями, а димер – 6-ю межмолекулярными водородными связями, в образованиии которых принимают участие N-концевые формильные группы. Предложенно, что открывание и закрывание канала связанно с ассоциацией и диссоциацией ( то есть с образованием и разрывом межмолекулярных водородных связей) такого ддимера [37] (РИС).

Схематическое изображение инактивации грамицидинового канала путем диссоциации димера голова к голове (структура Урри – Арсеньева).

Изучения аналогов грамицидина показали, что N-коцевая формильная группа оказывает сильное влияние на стабильность димера [38]. При ее замещении на более объемную ацетильную [39], сукцинильную [40] или при отсутствии вообще время жизни канала уменьшается. Исследования методом КД-спектроскопии показали сильные конформационные различия между нативным грамицидином и его аналогами, что, возможно является причиной дестабилизации канала [41].

Дальнейшие исследования с помощью 13С- и 15N-меченных аналогов в ориентированных мультиламелярных бислоях показали возможность существования праозакрученной конформации канала [24].

Наиболее детальная структурная конформация грамицидина была определенна методом двумерного ЯМР в комплексе грамицидина с додецилсульфатом натрия (Арсеньев и сотр. 1985 г.). Данная структура представляет собой спиральный димер, в котором каждая составляющая спираль имеет 6,3 остатка на виток (6,3-спиральный димер)

© Рефератбанк, 2002 - 2024